跳跃
数学
计量经济学
参数化复杂度
系列(地层学)
变化(天文学)
对比度(视觉)
极值理论
统计物理学
应用数学
统计
计算机科学
算法
物理
量子力学
古生物学
人工智能
天体物理学
生物
作者
Tim Bollerslev,Viktor Todorov
标识
DOI:10.1016/j.jeconom.2014.05.007
摘要
We develop new methods for the estimation of time-varying risk-neutral jump tails in asset returns. In contrast to existing procedures based on tightly parameterized models, our approach imposes much fewer structural assumptions, relying on extreme-value theory approximations together with short-maturity options. The new estimation approach explicitly allows the parameters characterizing the shape of the right and the left tails to differ, and importantly for the tail shape parameters to change over time. On implementing the procedures with a panel of S&P 500 options, our estimates clearly suggest the existence of highly statistically significant temporal variation in both of the tails. We further relate this temporal variation in the shape and the magnitude of the jump tails to the underlying return variation through the formulation of simple time series models for the tail parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI