Tikhonov正则化
离散化
正规化(语言学)
有限元法
反问题
理论(学习稳定性)
应用数学
数学
趋同(经济学)
领域(数学分析)
数学优化
计算机科学
数学分析
物理
机器学习
热力学
经济增长
人工智能
经济
作者
Jingzhi Li,Masahiro Yamamoto,Jun Zou
出处
期刊:Communications on Pure and Applied Analysis
[American Institute of Mathematical Sciences]
日期:2008-10-20
卷期号:8 (1): 361-382
被引量:52
标识
DOI:10.3934/cpaa.2009.8.361
摘要
In this paper, we address an inverse problem of reconstruction ofthe initial temperature in a heat conductive system when somemeasurement data of temperatureare available, which may be observed in a subregioninside or on the boundary of the physical domain, along a timeperiod which may start at some point, possibly far away from theinitial time. A conditional stability estimate is first achieved bythe Carleman estimate for such reconstruction. Numericalreconstruction algorithm is proposed based on the outputleast-squares formulation with the Tikhonov regularization using thefinite element discretization, and the existence and convergence ofthe finite element solution are presented. Numerical experiments arecarried out to demonstrate the applicability and effectiveness ofthe proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI