Pictorial Blood Loss Assessment Chart in the Evaluation of Heavy Menstrual Bleeding: Diagnostic Accuracy Compared to Alkaline Hematin

医学 月经 内科学 胃肠病学 产科 妇科
作者
Mahmoud S. Zakherah,Gamal H. Sayed,Sherif A. El‐Nashar,Mamdouh M. Shaaban
出处
期刊:Gynecologic and Obstetric Investigation [S. Karger AG]
卷期号:71 (4): 281-284 被引量:112
标识
DOI:10.1159/000320336
摘要

Background/Aims: The pictorial blood assessment chart (PBAC) is a method for evaluation of menstrual blood loss (MBL). This study was conducted to evaluate the accuracy of the PBAC score in diagnosing MBL compared to alkaline hematin as a gold standard. Methods: Two cohorts were constructed: 30 women who reported ‘normal’ menses and 170 who reported ‘heavy’ menses. Evaluation of menstruation was performed using the PBAC score and by alkaline hematin. Results: Women who reported normal menses were younger (p = 0.071), had lower parity [median parity of 3 (range 1–6) vs. 4 (range 1–12), p < 0.001] and higher hemoglobin levels (11.1 ± 1.1 vs. 10.1 ± 1.6 g/dl, p < 0.001). PBAC scores and MBL by alkaline hematin were significantly correlated (Spearman r = 0.600, p < 0.001). The PBAC score of 150 had a ĸ of 0.593 (95% CI 0.480–0.687) and an area under the curve of 0.796 (95% CI 0.770–0.821). In a multivariable regression PBAC score >150, presence of blood clots and period duration >7 days were independent predicators of heavy menstrual bleeding with an overall area under the curve of 0.858 (95% CI 0.835–0.879). Conclusions: The PBAC score is a simple and accurate tool for semiobjective of MBL that can be used in clinical practice to aid the decision about treatment and follow-up.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰韵心给冰韵心的求助进行了留言
刚刚
stars完成签到 ,获得积分10
刚刚
Lucas应助1123采纳,获得10
1秒前
1秒前
友好的天奇完成签到,获得积分20
1秒前
1秒前
星河鹭起发布了新的文献求助10
2秒前
开放的半烟完成签到,获得积分10
2秒前
dd完成签到,获得积分10
3秒前
da完成签到,获得积分10
3秒前
新芝完成签到,获得积分10
3秒前
3秒前
传奇3应助kls采纳,获得10
4秒前
危机的毛衣完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
Hosea发布了新的文献求助10
7秒前
能力越小责任越小完成签到,获得积分10
7秒前
abcd1234完成签到,获得积分20
7秒前
衣裳薄完成签到,获得积分10
7秒前
7秒前
8秒前
谦让鹏涛完成签到,获得积分20
8秒前
英俊的铭应助王小小采纳,获得10
8秒前
hyman发布了新的文献求助10
9秒前
9秒前
关关完成签到,获得积分10
10秒前
科研通AI2S应助赵文伟采纳,获得10
10秒前
10秒前
11秒前
11秒前
希望天下0贩的0应助Jane采纳,获得10
11秒前
sera发布了新的文献求助10
12秒前
12秒前
54646发布了新的文献求助10
13秒前
田一完成签到,获得积分10
13秒前
lshl2000发布了新的文献求助10
13秒前
13秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217557
求助须知:如何正确求助?哪些是违规求助? 2866772
关于积分的说明 8153476
捐赠科研通 2533694
什么是DOI,文献DOI怎么找? 1366407
科研通“疑难数据库(出版商)”最低求助积分说明 644764
邀请新用户注册赠送积分活动 617731