Unsupervised feature selection for multi-cluster data

特征选择 计算机科学 人工智能 聚类分析 选择(遗传算法) 模式识别(心理学) 特征学习 机器学习 星团(航天器) 无监督学习 数据挖掘 特征(语言学) 最小冗余特征选择 高维数据聚类 语言学 哲学
作者
Deng Cai,Chiyuan Zhang,Xiaofei He
出处
期刊:Knowledge Discovery and Data Mining 被引量:741
标识
DOI:10.1145/1835804.1835848
摘要

In many data analysis tasks, one is often confronted with very high dimensional data. Feature selection techniques are designed to find the relevant feature subset of the original features which can facilitate clustering, classification and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenario, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. The feature selection problem is essentially a combinatorial optimization problem which is computationally expensive. Traditional unsupervised feature selection methods address this issue by selecting the top ranked features based on certain scores computed independently for each feature. These approaches neglect the possible correlation between different features and thus can not produce an optimal feature subset. Inspired from the recent developments on manifold learning and L1-regularized models for subset selection, we propose in this paper a new approach, called Multi-Cluster Feature Selection (MCFS), for unsupervised feature selection. Specifically, we select those features such that the multi-cluster structure of the data can be best preserved. The corresponding optimization problem can be efficiently solved since it only involves a sparse eigen-problem and a L1-regularized least squares problem. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shayulajiao发布了新的文献求助10
刚刚
我必发C刊完成签到 ,获得积分10
刚刚
穆紫应助Shayulajiao采纳,获得10
3秒前
5秒前
Jasper应助搞怪羊采纳,获得10
5秒前
DDD完成签到,获得积分20
6秒前
暴躁小龙发布了新的文献求助10
6秒前
Shayulajiao完成签到,获得积分10
9秒前
Joyful完成签到,获得积分10
9秒前
10秒前
bkagyin应助yule采纳,获得10
10秒前
西柚完成签到,获得积分10
10秒前
梦在远方完成签到 ,获得积分10
11秒前
搞怪羊完成签到,获得积分20
11秒前
12秒前
12秒前
Rui发布了新的文献求助10
12秒前
彭喷喷发布了新的文献求助10
15秒前
是咸鱼呀完成签到,获得积分10
15秒前
Shao_Jq完成签到 ,获得积分10
16秒前
16秒前
博肖95发布了新的文献求助10
18秒前
不知完成签到 ,获得积分10
18秒前
hs发布了新的文献求助10
20秒前
21秒前
21秒前
Ash发布了新的文献求助10
22秒前
卜卜脆完成签到,获得积分10
24秒前
Billy应助Ivan采纳,获得10
24秒前
24秒前
wufel2完成签到,获得积分10
27秒前
我必发C刊关注了科研通微信公众号
27秒前
肖窈发布了新的文献求助10
28秒前
852应助火焰向上采纳,获得10
28秒前
彭喷喷完成签到,获得积分20
28秒前
31秒前
wwwwww发布了新的文献求助10
31秒前
左安完成签到,获得积分10
32秒前
33秒前
魏俏红完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057411
求助须知:如何正确求助?哪些是违规求助? 2713859
关于积分的说明 7437852
捐赠科研通 2358997
什么是DOI,文献DOI怎么找? 1249650
科研通“疑难数据库(出版商)”最低求助积分说明 607222
版权声明 596328