鉴定(生物学)
细胞周期进展
细胞周期
细胞
生物
遗传学
植物
作者
Lili He,Hua Yang,Yihong Ma,W. J. Pledger,W. Douglas Cress,Jin Q. Cheng
标识
DOI:10.1074/jbc.m803547200
摘要
Aurora-A is a centrosome kinase and plays a pivotal role in G(2)/M cell cycle progression. Expression of Aurora-A is cell cycle-dependent. Levels of Aurora-A mRNA and protein are low in G(1)/S, accumulate during G(2)/M, and decrease rapidly after mitosis. Previous studies have shown regulation of the Aurora-A protein level during the cell cycle through the ubiquitin-proteasome pathway. However, the mechanism of transcriptional regulation of Aurora-A remains largely unknown. Here, we demonstrated that E2F3 modulates Aurora-A mRNA expression during the cell cycle. Ectopic expression of E2F3 induces Aurora-A expression. Stable knockdown of E2F3 decreases mRNA and protein levels of Aurora-A and delays G(2)/M entry. Further, E2F3 directly binds to Aurora-A promoter and stimulates the promoter activity. Deletion and mutation analyses of the Aurora-A promoter revealed that a region located 96-bp upstream of the transcription initiation site is critical for the activation of the promoter by E2F3. In addition, expression of E2F3 positively correlates with the protein level of Aurora-A in human ovarian cancer examined. These results indicate for the first time that Aurora-A is transcriptionally regulated by E2F3 during the cell cycle and that E2F3 is a causal factor for up-regulation of Aurora-A in a subset of human ovarian cancer. Thus, the E2F3-Aurora-A axis could be an important target for cancer intervention.
科研通智能强力驱动
Strongly Powered by AbleSci AI