清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM).

计算机科学 计算机辅助诊断 人工智能 模式识别(心理学) 计算机辅助 特征(语言学) 计算机辅助设计 计算机视觉 计算机断层摄影术
作者
Ye Xu,Edwin J. R. van Beek,Yu Hwanjo,Junfeng Guo,Geoffrey McLennan,Eric A. Hoffman
出处
期刊:Academic Radiology [Elsevier]
卷期号:13 (8): 969-978 被引量:116
标识
DOI:10.1016/j.acra.2006.04.017
摘要

Rationale and Objectives Computer-aided detection algorithms applied to multidetector row CT (MDCT) lung image data sets have the potential to significantly alter clinical practice through the early, quantitative detection of pulmonary pathology. In this project, we have further developed a computer-aided detection tool, the adaptive multiple feature method (AMFM), for the detection of interstitial lung diseases based on MDCT-generated volumetric data. Materials and Methods We performed MDCT (Siemens Sensation 16 or 64 120 kV, B50f convolution kernel, and ≤0.75-mm slice thickness) on 20 human volunteers recruited from four cohorts studied under an National Institutes of Health–sponsored Bioengineering Research Partnership Grant: 1) normal never smokers; 2) normal smokers; 3) those with emphysema, and 4) those with interstitial lung disease (total: 11 males, 9 females; age range 20–75 years, mean age 40 years). A total of 1,184 volumes of interest (VOIs; 21 × 21 pixels in plane) were marked by a senior radiologist and a senior pulmonologist as emphysema (EMPH, n = 287); ground-glass (GG, n = 147), honeycombing (HC, n = 137), normal nonsmokers (NN, n = 287), and normal smokers (NS, n = 326). For each VOI, we calculated 24 volumetric features, including statistical features (first-order features, run-length, and co-occurrence features), histogram, and fractal features. We compared two methods of classification (a Support Vector Machine (SVM) and a Bayesian classifier) using a 10-fold cross validation method and McNemar’s test. Results The sensitivity of five patterns in the form of Bayesian/SVM was: EMPH: 91/93%; GG: 89/86%; HC: 93/90%; NN: 90/73%; and NS: 75/82%. The specificity of five patterns in the form of Bayesian/support vector machine was: EMPH: 98/98%; GG: 98/98%; HC: 99/99%; NN: 90/94%; and NS: 96/91%. Conclusion We conclude that volumetric features including statistical features, histogram and fractal features can be successfully used in differentiation of parenchymal pathology associated with both emphysema and interstitial lung diseases. Additionally, support vector machine and Bayesian methods are comparable classifiers for characterization of interstitial lung diseases on MDCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
39秒前
48秒前
披着羊皮的狼完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
随心所欲完成签到 ,获得积分10
1分钟前
1分钟前
nbtzy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
宅心仁厚完成签到 ,获得积分10
1分钟前
1分钟前
精明寒松完成签到 ,获得积分10
2分钟前
半喇柯基发布了新的文献求助10
2分钟前
Gary完成签到 ,获得积分10
3分钟前
Demi_Ming完成签到,获得积分10
3分钟前
3分钟前
fhw完成签到 ,获得积分10
3分钟前
aero完成签到 ,获得积分10
3分钟前
3分钟前
SCH_zhu发布了新的文献求助10
3分钟前
SCH_zhu完成签到,获得积分10
3分钟前
Criminology34完成签到,获得积分0
4分钟前
John完成签到,获得积分10
4分钟前
4分钟前
大西发布了新的文献求助10
5分钟前
Una完成签到,获得积分10
5分钟前
直率若烟完成签到 ,获得积分10
5分钟前
酷酷海豚完成签到,获得积分10
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
桃子爱学习给桃子爱学习的求助进行了留言
5分钟前
muriel完成签到,获得积分0
5分钟前
大西完成签到,获得积分10
5分钟前
如歌完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
满意的伊完成签到,获得积分10
5分钟前
ADcal完成签到 ,获得积分10
6分钟前
开心的瘦子完成签到,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303286
求助须知:如何正确求助?哪些是违规求助? 4450158
关于积分的说明 13849104
捐赠科研通 4336792
什么是DOI,文献DOI怎么找? 2381094
邀请新用户注册赠送积分活动 1376083
关于科研通互助平台的介绍 1342675