Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM).

计算机科学 计算机辅助诊断 人工智能 模式识别(心理学) 计算机辅助 特征(语言学) 计算机辅助设计 计算机视觉 计算机断层摄影术
作者
Ye Xu,Edwin J. R. van Beek,Yu Hwanjo,Junfeng Guo,Geoffrey McLennan,Eric A. Hoffman
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:13 (8): 969-978 被引量:116
标识
DOI:10.1016/j.acra.2006.04.017
摘要

Rationale and Objectives Computer-aided detection algorithms applied to multidetector row CT (MDCT) lung image data sets have the potential to significantly alter clinical practice through the early, quantitative detection of pulmonary pathology. In this project, we have further developed a computer-aided detection tool, the adaptive multiple feature method (AMFM), for the detection of interstitial lung diseases based on MDCT-generated volumetric data. Materials and Methods We performed MDCT (Siemens Sensation 16 or 64 120 kV, B50f convolution kernel, and ≤0.75-mm slice thickness) on 20 human volunteers recruited from four cohorts studied under an National Institutes of Health–sponsored Bioengineering Research Partnership Grant: 1) normal never smokers; 2) normal smokers; 3) those with emphysema, and 4) those with interstitial lung disease (total: 11 males, 9 females; age range 20–75 years, mean age 40 years). A total of 1,184 volumes of interest (VOIs; 21 × 21 pixels in plane) were marked by a senior radiologist and a senior pulmonologist as emphysema (EMPH, n = 287); ground-glass (GG, n = 147), honeycombing (HC, n = 137), normal nonsmokers (NN, n = 287), and normal smokers (NS, n = 326). For each VOI, we calculated 24 volumetric features, including statistical features (first-order features, run-length, and co-occurrence features), histogram, and fractal features. We compared two methods of classification (a Support Vector Machine (SVM) and a Bayesian classifier) using a 10-fold cross validation method and McNemar’s test. Results The sensitivity of five patterns in the form of Bayesian/SVM was: EMPH: 91/93%; GG: 89/86%; HC: 93/90%; NN: 90/73%; and NS: 75/82%. The specificity of five patterns in the form of Bayesian/support vector machine was: EMPH: 98/98%; GG: 98/98%; HC: 99/99%; NN: 90/94%; and NS: 96/91%. Conclusion We conclude that volumetric features including statistical features, histogram and fractal features can be successfully used in differentiation of parenchymal pathology associated with both emphysema and interstitial lung diseases. Additionally, support vector machine and Bayesian methods are comparable classifiers for characterization of interstitial lung diseases on MDCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
libaibai完成签到 ,获得积分10
1秒前
HR112完成签到,获得积分0
2秒前
3秒前
TrDoubleE完成签到 ,获得积分10
3秒前
脑洞疼应助淡然的夜柳采纳,获得10
6秒前
隐形曼青应助Nakacoke77采纳,获得10
7秒前
cui完成签到,获得积分10
7秒前
共享精神应助智智采纳,获得10
7秒前
7秒前
heavennew完成签到,获得积分10
7秒前
科目三应助maclogos采纳,获得10
8秒前
砍柴少年发布了新的文献求助10
9秒前
852应助songyl采纳,获得10
9秒前
9秒前
Jaden发布了新的文献求助10
10秒前
11秒前
bkagyin应助Either采纳,获得10
13秒前
桐桐应助砍柴少年采纳,获得10
16秒前
pp发布了新的文献求助10
16秒前
搜集达人应助文艺的冬卉采纳,获得10
17秒前
19秒前
诸葛藏藏完成签到 ,获得积分10
19秒前
闲听花落完成签到 ,获得积分10
21秒前
风中寻凝发布了新的文献求助20
22秒前
伶俐碧萱完成签到 ,获得积分10
22秒前
22秒前
22秒前
无辜的怜烟完成签到 ,获得积分10
23秒前
23秒前
QING完成签到 ,获得积分20
24秒前
迷人岩发布了新的文献求助10
24秒前
24秒前
田轲关注了科研通微信公众号
24秒前
典雅碧空发布了新的文献求助30
25秒前
Either发布了新的文献求助10
27秒前
27秒前
27秒前
Lost发布了新的文献求助10
28秒前
cc完成签到,获得积分20
29秒前
277完成签到 ,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030