Druggability of Dynamic Protein-protein Interfaces

可药性 分子动力学 灵活性(工程) 蛋白质动力学 小分子 药物发现 表面蛋白 生物物理学 蛋白质结构 化学 计算生物学 纳米技术 生物 生物化学 材料科学 计算化学 统计 数学 病毒学 基因
作者
Özlem Ulucan,Susanne Eyrisch,Volkhard Helms
出处
期刊:Current Pharmaceutical Design [Bentham Science]
卷期号:18 (30): 4599-4606 被引量:27
标识
DOI:10.2174/138161212802651652
摘要

The conformational flexibility of protein targets is being increasingly recognized in the drug discovery and design processes. When working on a particular disease-related biochemical pathway, it is of crucial importance to carefully select druggable protein binding pockets among all those cavities that may appear transiently or permanently on the respective protein surface. In this review, we will focus on the conformational dynamics of proteins that governs the formation and disappearance of such transient pockets on protein surfaces. We will also touch on the issue of druggability of transiently formed pockets. For example, protein cavities suitable to bind small drug-like molecules show an increased pocket size and buriedness when compared to empty sites. Interestingly, we observed in molecular dynamics simulations of five different protein systems that the conformational transitions on the protein surface occur almost barrierless and large pockets are found at similar frequencies as small pockets, see below. Thus, the dynamical processes at protein surfaces are better visualized as fluid-like motion than as energetically activated events. We conclude by comparing two computational tools, EPOS and MDpocket, for identifying transient pockets in PDK1 kinase. We illustrate how the obtained results depend on the way in which corresponding pockets in different molecular dynamics snapshots are connected to each other. Keywords: Molecular dynamics simulation, binding pocket, transient pocket, protein cavity, EPOS, MDpocket, protein targets, conformational transitions, PDK1 kinase, amino acids.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李正安完成签到,获得积分10
2秒前
啵啵小甜狗完成签到,获得积分10
3秒前
qiu完成签到,获得积分20
3秒前
3秒前
0031完成签到 ,获得积分10
6秒前
6秒前
再睡十分钟完成签到 ,获得积分10
7秒前
moon发布了新的文献求助10
7秒前
9秒前
10秒前
无限的盼晴完成签到,获得积分20
10秒前
11秒前
zys完成签到 ,获得积分10
11秒前
renshiq完成签到,获得积分10
11秒前
11秒前
科目三应助orchid采纳,获得10
14秒前
14秒前
陶醉之玉完成签到,获得积分10
15秒前
Maddy完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
bobobo发布了新的文献求助10
16秒前
Enkcy发布了新的文献求助10
16秒前
CGEA完成签到,获得积分10
16秒前
wuyuan完成签到,获得积分10
17秒前
酷波er应助臻灏采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
风驻云停完成签到,获得积分10
19秒前
Ava应助隔壁的邻家小兴采纳,获得10
21秒前
等待的道消完成签到 ,获得积分10
21秒前
无极微光应助过时的访梦采纳,获得20
21秒前
xiaoxie发布了新的文献求助20
22秒前
22秒前
22秒前
呐呐呐发布了新的文献求助10
24秒前
情怀应助carrotyi采纳,获得10
25秒前
千树怜发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176