亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preeclampsia: a bioinformatics approach through protein-protein interaction networks analysis

中心性 鉴定(生物学) 计算生物学 子痫前期 生物 生物信息学 基因 交互网络 蛋白质组学 系统生物学 疾病 遗传学 医学 怀孕 内科学 植物 数学 组合数学
作者
Eduardo Tejera,João Bernardes,Irene Rebelo
出处
期刊:BMC Systems Biology [Springer Nature]
卷期号:6 (1) 被引量:27
标识
DOI:10.1186/1752-0509-6-97
摘要

Abstract Background In this study we explored preeclampsia through a bioinformatics approach. We create a comprehensive genes/proteins dataset by the analysis of both public proteomic data and text mining of public scientific literature. From this dataset the associated protein-protein interaction network has been obtained. Several indexes of centrality have been explored for hubs detection as well as the enrichment statistical analysis of metabolic pathway and disease. Results We confirmed the well known relationship between preeclampsia and cardiovascular diseases but also identified statistically significant relationships with respect to cancer and aging. Moreover, significant metabolic pathways such as apoptosis, cancer and cytokine-cytokine receptor interaction have also been identified by enrichment analysis. We obtained FLT1, VEGFA, FN1, F2 and PGF genes with the highest scores by hubs analysis; however, we also found other genes as PDIA3, LYN, SH2B2 and NDRG1 with high scores. Conclusions The applied methodology not only led to the identification of well known genes related to preeclampsia but also to propose new candidates poorly explored or completely unknown in the pathogenesis of preeclampsia, which eventually need to be validated experimentally. Moreover, new possible connections were detected between preeclampsia and other diseases that could open new areas of research. More must be done in this area to resolve the identification of unknown interactions of proteins/genes and also for a better integration of metabolic pathways and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谢一发布了新的文献求助30
6秒前
张杰列夫完成签到 ,获得积分10
7秒前
刘涛发布了新的文献求助10
11秒前
江离完成签到 ,获得积分10
21秒前
wanci应助简单采纳,获得10
23秒前
CodeCraft应助简单采纳,获得10
23秒前
nalan完成签到,获得积分10
28秒前
29秒前
李爱国应助Marciu33采纳,获得10
30秒前
zzyh307完成签到 ,获得积分0
34秒前
科研通AI2S应助iwjlkdjalkjc采纳,获得10
40秒前
50秒前
简单发布了新的文献求助10
55秒前
55秒前
chenwei完成签到,获得积分10
59秒前
59秒前
Marciu33发布了新的文献求助10
59秒前
共享精神应助科研通管家采纳,获得10
1分钟前
李健的粉丝团团长应助Xx采纳,获得10
1分钟前
RyanColin完成签到,获得积分10
1分钟前
Echopotter完成签到,获得积分10
1分钟前
ding应助李蕤蕤采纳,获得10
1分钟前
1分钟前
跳跃毒娘发布了新的文献求助30
1分钟前
1分钟前
1分钟前
暖暖发布了新的文献求助10
1分钟前
2分钟前
2分钟前
暖暖完成签到,获得积分10
2分钟前
2分钟前
2分钟前
李蕤蕤发布了新的文献求助10
2分钟前
打打应助Marciu33采纳,获得10
2分钟前
2分钟前
陶醉觅夏发布了新的文献求助50
2分钟前
2分钟前
2分钟前
李李发布了新的文献求助10
2分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413289
求助须知:如何正确求助?哪些是违规求助? 3015642
关于积分的说明 8871542
捐赠科研通 2703375
什么是DOI,文献DOI怎么找? 1482215
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679927