Uniform-Penalty Inversion of Multiexponential Decay Data

平滑的 反演(地质) 单调函数 噪音(视频) 迭代法 放松(心理学) 统计物理学 数学 物理 数学分析 算法 计算机科学 统计 地质学 社会心理学 构造盆地 图像(数学) 古生物学 人工智能 心理学
作者
G.C. Borgia,R. James Brown,Paola Fantazzini
出处
期刊:Journal of Magnetic Resonance [Elsevier]
卷期号:132 (1): 65-77 被引量:412
标识
DOI:10.1006/jmre.1998.1387
摘要

NMR relaxation data and those from many other physical measurements are sums of exponentially decaying components, combined with some unavoidable measurement noise. When decay data are inverted in order to give quasi-continuous distributions of relaxation times, some smoothing of the distributions is normally implemented to avoid excess variation. When the same distribution has a sharp peak and a much broader peak or a “tail,” as for many porous media saturated with liquids, an inversion program using a fixed smoothing coefficient may broaden the sharp peak and/or break the wide peak or tail into several separate peaks, even if the coefficient is adaptively chosen in accord with the noise level of the data. We deal with this problem by using variable smoothing, determined by iterative feedback in such a way that the smoothingpenaltyis roughly constant. This uniform-penalty (UP) smoothing can give sharp lines, not broadened more than is consistent with the noise, and in the same distribution it can show a tail decades long without breaking it up into several peaks. The noise level must be known approximately, but it can be determined more than adequately by a preliminary inversion. The same iterative procedure is used to implement constraints such as non-negative (NN) or monotonic-from-peak (MT). The significance of an additional resolved peak may be tested by finding the cost of using MT to force a unimodal solution. A bimodal constraint can be applied. Decay data representing sharp lines in contact with broad features can require substantial computing time and some controls to stabilize the iterative sequence. However, UP can be made to function smoothly for a very wide variety of decay curves, which can be processed without adjustment of parameters, including the dimensionless smoothing parameters. Extensive testing has been done with artificial data. Examples are shown for artificial data, biological tissues, ceramic technology, and sandstones. Expressions are given relating noise level to line width and for significance of increase or decrease in error of fit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的雨竹完成签到,获得积分10
1秒前
kirazou完成签到,获得积分10
2秒前
yuanshi完成签到 ,获得积分10
2秒前
3秒前
椰子发布了新的文献求助10
3秒前
3秒前
renpp822发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
6秒前
zhoudaien发布了新的文献求助10
8秒前
211发布了新的文献求助10
8秒前
Anby完成签到,获得积分10
9秒前
zm完成签到,获得积分10
10秒前
justin完成签到,获得积分10
10秒前
深情安青应助开心荷包蛋采纳,获得10
11秒前
风清扬发布了新的文献求助10
11秒前
12秒前
Ian完成签到,获得积分10
13秒前
Tiff110完成签到 ,获得积分20
13秒前
JamesPei应助刻苦的映易采纳,获得10
14秒前
姆姆发布了新的文献求助10
17秒前
211完成签到,获得积分10
17秒前
邢晓彤完成签到 ,获得积分10
17秒前
17秒前
南楠完成签到,获得积分10
19秒前
19秒前
lmz完成签到,获得积分10
19秒前
renpp822完成签到,获得积分10
19秒前
winterendless完成签到 ,获得积分10
20秒前
燕小丙完成签到,获得积分10
21秒前
carrier_hc完成签到,获得积分10
21秒前
风清扬完成签到,获得积分0
21秒前
zhoudaien完成签到,获得积分10
21秒前
万能图书馆应助晨儿采纳,获得10
22秒前
lilili完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
科研通AI2S应助姆姆采纳,获得10
23秒前
略略略发布了新的文献求助10
24秒前
Joanna完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646438
求助须知:如何正确求助?哪些是违规求助? 4771331
关于积分的说明 15034955
捐赠科研通 4805240
什么是DOI,文献DOI怎么找? 2569540
邀请新用户注册赠送积分活动 1526547
关于科研通互助平台的介绍 1485858