Uniform-Penalty Inversion of Multiexponential Decay Data

平滑的 反演(地质) 单调函数 噪音(视频) 迭代法 放松(心理学) 统计物理学 数学 物理 数学分析 算法 计算机科学 统计 地质学 社会心理学 构造盆地 图像(数学) 古生物学 人工智能 心理学
作者
G.C. Borgia,R. James Brown,Paola Fantazzini
出处
期刊:Journal of Magnetic Resonance [Elsevier]
卷期号:132 (1): 65-77 被引量:412
标识
DOI:10.1006/jmre.1998.1387
摘要

NMR relaxation data and those from many other physical measurements are sums of exponentially decaying components, combined with some unavoidable measurement noise. When decay data are inverted in order to give quasi-continuous distributions of relaxation times, some smoothing of the distributions is normally implemented to avoid excess variation. When the same distribution has a sharp peak and a much broader peak or a “tail,” as for many porous media saturated with liquids, an inversion program using a fixed smoothing coefficient may broaden the sharp peak and/or break the wide peak or tail into several separate peaks, even if the coefficient is adaptively chosen in accord with the noise level of the data. We deal with this problem by using variable smoothing, determined by iterative feedback in such a way that the smoothingpenaltyis roughly constant. This uniform-penalty (UP) smoothing can give sharp lines, not broadened more than is consistent with the noise, and in the same distribution it can show a tail decades long without breaking it up into several peaks. The noise level must be known approximately, but it can be determined more than adequately by a preliminary inversion. The same iterative procedure is used to implement constraints such as non-negative (NN) or monotonic-from-peak (MT). The significance of an additional resolved peak may be tested by finding the cost of using MT to force a unimodal solution. A bimodal constraint can be applied. Decay data representing sharp lines in contact with broad features can require substantial computing time and some controls to stabilize the iterative sequence. However, UP can be made to function smoothly for a very wide variety of decay curves, which can be processed without adjustment of parameters, including the dimensionless smoothing parameters. Extensive testing has been done with artificial data. Examples are shown for artificial data, biological tissues, ceramic technology, and sandstones. Expressions are given relating noise level to line width and for significance of increase or decrease in error of fit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yangmudan发布了新的文献求助30
1秒前
落后的寄文完成签到,获得积分10
1秒前
幸福小孩发布了新的文献求助20
1秒前
风起完成签到,获得积分10
1秒前
SciGPT应助刘佳恬采纳,获得10
1秒前
炙热的平灵完成签到,获得积分20
2秒前
汉堡包应助西西采纳,获得10
2秒前
2秒前
2秒前
18216781882完成签到,获得积分10
2秒前
3秒前
秋秋发布了新的文献求助10
3秒前
YAN发布了新的文献求助10
3秒前
yyj完成签到,获得积分20
3秒前
4秒前
夕夜完成签到,获得积分10
4秒前
科研通AI6应助shining采纳,获得10
5秒前
咸奶兔丝完成签到,获得积分10
5秒前
HJJHJH发布了新的文献求助10
5秒前
5秒前
啦啦应助彩虹小马采纳,获得10
6秒前
852应助coolplex采纳,获得10
6秒前
李健应助LeeFY采纳,获得10
6秒前
希望天下0贩的0应助hhh采纳,获得10
6秒前
yang完成签到 ,获得积分10
6秒前
斯文败类应助諵来北往采纳,获得10
7秒前
桐桐应助celine采纳,获得10
7秒前
盲点完成签到,获得积分10
7秒前
8秒前
欢喜的火龙果完成签到,获得积分10
8秒前
MX120251336发布了新的文献求助10
8秒前
玩命的语蝶完成签到,获得积分10
9秒前
完美世界应助Yoo.采纳,获得10
9秒前
9秒前
NexusExplorer应助FlipFlops采纳,获得10
10秒前
负责蜜蜂发布了新的文献求助10
10秒前
HOAN应助踏雾采纳,获得50
10秒前
10秒前
hahahah发布了新的文献求助20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041