Uniform-Penalty Inversion of Multiexponential Decay Data

平滑的 反演(地质) 单调函数 噪音(视频) 迭代法 放松(心理学) 统计物理学 数学 物理 数学分析 算法 计算机科学 统计 地质学 社会心理学 构造盆地 图像(数学) 古生物学 人工智能 心理学
作者
G.C. Borgia,R. James Brown,Paola Fantazzini
出处
期刊:Journal of Magnetic Resonance [Elsevier BV]
卷期号:132 (1): 65-77 被引量:412
标识
DOI:10.1006/jmre.1998.1387
摘要

NMR relaxation data and those from many other physical measurements are sums of exponentially decaying components, combined with some unavoidable measurement noise. When decay data are inverted in order to give quasi-continuous distributions of relaxation times, some smoothing of the distributions is normally implemented to avoid excess variation. When the same distribution has a sharp peak and a much broader peak or a “tail,” as for many porous media saturated with liquids, an inversion program using a fixed smoothing coefficient may broaden the sharp peak and/or break the wide peak or tail into several separate peaks, even if the coefficient is adaptively chosen in accord with the noise level of the data. We deal with this problem by using variable smoothing, determined by iterative feedback in such a way that the smoothingpenaltyis roughly constant. This uniform-penalty (UP) smoothing can give sharp lines, not broadened more than is consistent with the noise, and in the same distribution it can show a tail decades long without breaking it up into several peaks. The noise level must be known approximately, but it can be determined more than adequately by a preliminary inversion. The same iterative procedure is used to implement constraints such as non-negative (NN) or monotonic-from-peak (MT). The significance of an additional resolved peak may be tested by finding the cost of using MT to force a unimodal solution. A bimodal constraint can be applied. Decay data representing sharp lines in contact with broad features can require substantial computing time and some controls to stabilize the iterative sequence. However, UP can be made to function smoothly for a very wide variety of decay curves, which can be processed without adjustment of parameters, including the dimensionless smoothing parameters. Extensive testing has been done with artificial data. Examples are shown for artificial data, biological tissues, ceramic technology, and sandstones. Expressions are given relating noise level to line width and for significance of increase or decrease in error of fit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老实天奇发布了新的文献求助10
刚刚
刚刚
1秒前
小马甲应助亭瞳采纳,获得10
1秒前
科研通AI5应助asADA采纳,获得10
1秒前
十一发布了新的文献求助10
1秒前
充电宝应助Xiaolingsmiling采纳,获得10
2秒前
ymj完成签到,获得积分10
2秒前
LMC发布了新的文献求助10
2秒前
科研通AI6应助Aliaoovo采纳,获得10
3秒前
含蓄戾发布了新的文献求助10
4秒前
5秒前
6秒前
一月发布了新的文献求助10
6秒前
7秒前
浮游应助hou采纳,获得10
8秒前
叶枫寒完成签到 ,获得积分10
8秒前
9秒前
wewe发布了新的文献求助10
9秒前
传奇3应助积极念波采纳,获得10
10秒前
GAW完成签到,获得积分10
10秒前
AAA问靠谱完成签到,获得积分10
10秒前
等DENG完成签到,获得积分10
10秒前
咖褐完成签到 ,获得积分10
11秒前
JUGG发布了新的文献求助10
12秒前
淡定自中发布了新的文献求助10
12秒前
12秒前
英俊的铭应助liuhao采纳,获得10
13秒前
13秒前
在水一方应助TristanGuan采纳,获得10
14秒前
15秒前
学术LJ完成签到,获得积分10
15秒前
九色可乐完成签到,获得积分10
16秒前
清秀豆芽发布了新的文献求助10
17秒前
18秒前
852应助老实天奇采纳,获得10
18秒前
科目三应助wewe采纳,获得10
19秒前
要减肥面包完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113