Uniform-Penalty Inversion of Multiexponential Decay Data

平滑的 反演(地质) 单调函数 噪音(视频) 迭代法 放松(心理学) 统计物理学 数学 物理 数学分析 算法 计算机科学 统计 地质学 社会心理学 构造盆地 图像(数学) 古生物学 人工智能 心理学
作者
G.C. Borgia,R. James Brown,Paola Fantazzini
出处
期刊:Journal of Magnetic Resonance [Elsevier]
卷期号:132 (1): 65-77 被引量:412
标识
DOI:10.1006/jmre.1998.1387
摘要

NMR relaxation data and those from many other physical measurements are sums of exponentially decaying components, combined with some unavoidable measurement noise. When decay data are inverted in order to give quasi-continuous distributions of relaxation times, some smoothing of the distributions is normally implemented to avoid excess variation. When the same distribution has a sharp peak and a much broader peak or a “tail,” as for many porous media saturated with liquids, an inversion program using a fixed smoothing coefficient may broaden the sharp peak and/or break the wide peak or tail into several separate peaks, even if the coefficient is adaptively chosen in accord with the noise level of the data. We deal with this problem by using variable smoothing, determined by iterative feedback in such a way that the smoothingpenaltyis roughly constant. This uniform-penalty (UP) smoothing can give sharp lines, not broadened more than is consistent with the noise, and in the same distribution it can show a tail decades long without breaking it up into several peaks. The noise level must be known approximately, but it can be determined more than adequately by a preliminary inversion. The same iterative procedure is used to implement constraints such as non-negative (NN) or monotonic-from-peak (MT). The significance of an additional resolved peak may be tested by finding the cost of using MT to force a unimodal solution. A bimodal constraint can be applied. Decay data representing sharp lines in contact with broad features can require substantial computing time and some controls to stabilize the iterative sequence. However, UP can be made to function smoothly for a very wide variety of decay curves, which can be processed without adjustment of parameters, including the dimensionless smoothing parameters. Extensive testing has been done with artificial data. Examples are shown for artificial data, biological tissues, ceramic technology, and sandstones. Expressions are given relating noise level to line width and for significance of increase or decrease in error of fit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
斯文败类应助Pumpkin采纳,获得10
1秒前
林枫发布了新的文献求助10
1秒前
小彭陪小崔读个研完成签到 ,获得积分10
2秒前
2秒前
DNA完成签到,获得积分10
2秒前
紫轩发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
酷炫天蓉完成签到,获得积分10
3秒前
CipherSage应助E1dent采纳,获得10
3秒前
4秒前
缝纫工发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
情怀应助欢呼的开山采纳,获得10
6秒前
6秒前
马放南山发布了新的文献求助10
7秒前
幽默小虾米完成签到,获得积分10
7秒前
7秒前
Owen应助洁净青筠采纳,获得10
7秒前
忧心的寒蕾完成签到,获得积分20
7秒前
7秒前
自觉的契发布了新的文献求助10
8秒前
香芋派完成签到,获得积分10
9秒前
紫轩完成签到,获得积分10
9秒前
积极毛巾发布了新的文献求助10
9秒前
Shixin发布了新的文献求助10
9秒前
Om发布了新的文献求助10
10秒前
cl发布了新的文献求助10
10秒前
程雪霞发布了新的文献求助10
11秒前
yu发布了新的文献求助10
11秒前
PaulLao完成签到,获得积分10
12秒前
12秒前
Shannon完成签到,获得积分10
12秒前
今夕发布了新的文献求助10
12秒前
Cheney完成签到,获得积分10
13秒前
tt发布了新的文献求助10
14秒前
咖喱姜酱发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692886
求助须知:如何正确求助?哪些是违规求助? 5090698
关于积分的说明 15210088
捐赠科研通 4850102
什么是DOI,文献DOI怎么找? 2601504
邀请新用户注册赠送积分活动 1553332
关于科研通互助平台的介绍 1511381