Uniform-Penalty Inversion of Multiexponential Decay Data

平滑的 反演(地质) 单调函数 噪音(视频) 迭代法 放松(心理学) 统计物理学 数学 物理 数学分析 算法 计算机科学 统计 地质学 社会心理学 构造盆地 图像(数学) 古生物学 人工智能 心理学
作者
G.C. Borgia,R. James Brown,Paola Fantazzini
出处
期刊:Journal of Magnetic Resonance [Elsevier]
卷期号:132 (1): 65-77 被引量:412
标识
DOI:10.1006/jmre.1998.1387
摘要

NMR relaxation data and those from many other physical measurements are sums of exponentially decaying components, combined with some unavoidable measurement noise. When decay data are inverted in order to give quasi-continuous distributions of relaxation times, some smoothing of the distributions is normally implemented to avoid excess variation. When the same distribution has a sharp peak and a much broader peak or a “tail,” as for many porous media saturated with liquids, an inversion program using a fixed smoothing coefficient may broaden the sharp peak and/or break the wide peak or tail into several separate peaks, even if the coefficient is adaptively chosen in accord with the noise level of the data. We deal with this problem by using variable smoothing, determined by iterative feedback in such a way that the smoothingpenaltyis roughly constant. This uniform-penalty (UP) smoothing can give sharp lines, not broadened more than is consistent with the noise, and in the same distribution it can show a tail decades long without breaking it up into several peaks. The noise level must be known approximately, but it can be determined more than adequately by a preliminary inversion. The same iterative procedure is used to implement constraints such as non-negative (NN) or monotonic-from-peak (MT). The significance of an additional resolved peak may be tested by finding the cost of using MT to force a unimodal solution. A bimodal constraint can be applied. Decay data representing sharp lines in contact with broad features can require substantial computing time and some controls to stabilize the iterative sequence. However, UP can be made to function smoothly for a very wide variety of decay curves, which can be processed without adjustment of parameters, including the dimensionless smoothing parameters. Extensive testing has been done with artificial data. Examples are shown for artificial data, biological tissues, ceramic technology, and sandstones. Expressions are given relating noise level to line width and for significance of increase or decrease in error of fit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉克丝完成签到,获得积分10
2秒前
研友_VZG7GZ应助Leon采纳,获得10
3秒前
答题不卡发布了新的文献求助10
4秒前
5秒前
6秒前
哇哈哈哈完成签到,获得积分10
7秒前
7秒前
拉克丝发布了新的文献求助10
9秒前
Lucas应助youngman采纳,获得10
9秒前
美好的冰蓝完成签到 ,获得积分10
10秒前
10秒前
hutu的小朱完成签到,获得积分10
12秒前
王翔飞完成签到,获得积分20
12秒前
嗯哈发布了新的文献求助10
12秒前
婼汐完成签到 ,获得积分10
12秒前
浮游应助jason采纳,获得10
14秒前
14秒前
MYC007完成签到 ,获得积分10
14秒前
17秒前
17秒前
小二郎应助成成采纳,获得10
17秒前
18秒前
斯文败类应助硝基采纳,获得10
18秒前
18秒前
19秒前
等待的mango完成签到,获得积分10
19秒前
聂白晴发布了新的文献求助10
19秒前
上官雨时发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
ding应助刘源采纳,获得10
20秒前
21秒前
21秒前
北媛完成签到,获得积分10
21秒前
22秒前
认真的数据线完成签到 ,获得积分10
23秒前
23秒前
爆米花应助sks采纳,获得10
23秒前
24秒前
亦玉发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474