材料科学
光催化
可见光谱
无定形固体
铝
分解水
太阳能
能量转换效率
吸收(声学)
制氢
光电子学
化学工程
氢
复合材料
化学
催化作用
生物
生物化学
工程类
有机化学
生态学
作者
Zhou Wang,Chongyin Yang,Tianquan Lin,Hao Yin,Ping Chen,Dongyun Wan,Fangfang Xu,Fuqiang Huang,Jianhua Lin,Xiaoming Xie,Mianheng Jiang
摘要
Utilizing solar energy for hydrogen generation and water cleaning is a great challenge due to insufficient visible-light power conversion. Here we report a mass production approach to synthesize black titania by aluminium reduction. The obtained sample possesses a unique crystalline core–amorphous shell structure (TiO2@TiO2−x). The black titania absorbs ∼65% of the total solar energy by improving visible and infrared absorption, superior to the recently reported ones (∼30%) and pristine TiO2 (∼5%). The unique core–shell structure (TiO2@TiO2−x) and high absorption boost the photocatalytic water cleaning and water splitting. The black titania is also an excellent photoelectrochemical electrode exhibiting a high solar-to-hydrogen efficiency (1.7%). A large photothermic effect may enable black titania “capture” solar energy for solar thermal collectors. The Al-reduced amorphous shell is proved to be an excellent candidate to absorb more solar light and receive more efficient photocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI