Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model

丘脑底核 隐马尔可夫模型 脑深部刺激 帕金森病 模式识别(心理学) 局部场电位 计算机科学 神经科学 人工智能 语音识别 心理学 医学 疾病 病理
作者
Adam Zaidel,Alexander Spivak,Lavi Shpigelman,Hagai Bergman,Zvi Israel
出处
期刊:Movement Disorders [Wiley]
卷期号:24 (12): 1785-1793 被引量:116
标识
DOI:10.1002/mds.22674
摘要

Abstract Positive therapeutic response without adverse side effects to subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson's disease (PD) depends to a large extent on electrode location within the STN. The sensorimotor region of the STN (seemingly the preferred location for STN DBS) lies dorsolaterally, in a region also marked by distinct beta (13–30 Hz) oscillations in the parkinsonian state. In this study, we present a real‐time method to accurately demarcate subterritories of the STN during surgery, based on microelectrode recordings (MERs) and a Hidden Markov Model (HMM). Fifty‐six MER trajectories were used, obtained from 21 PD patients who underwent bilateral STN DBS implantation surgery. Root mean square (RMS) and power spectral density (PSD) of the MERs were used to train and test an HMM in identifying the dorsolateral oscillatory region (DLOR) and nonoscillatory subterritories within the STN. The HMM demarcations were compared to the decisions of a human expert. The HMM identified STN‐entry, the ventral boundary of the DLOR, and STN‐exit with an error of −0.09 ± 0.35, −0.27 ± 0.58, and −0.20 ± 0.33 mm, respectively (mean ± standard deviation), and with detection reliability (error < 1 mm) of 95, 86, and 91%, respectively. The HMM was successful despite a very coarse clustering method and was robust to parameter variation. Thus, using an HMM in conjunction with RMS and PSD measures of intraoperative MER can provide improved refinement of STN entry and exit in comparison with previously reported automatic methods, and introduces a novel (intra‐STN) detection of a distinct DLOR‐ventral boundary. © 2009 Movement Disorder Society
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sailzyf完成签到,获得积分10
刚刚
抓恐龙发布了新的文献求助10
刚刚
刚刚
汉堡包应助言小采纳,获得10
1秒前
Chen发布了新的文献求助10
1秒前
lql233完成签到,获得积分20
1秒前
雪白问兰完成签到 ,获得积分10
1秒前
1秒前
魅力蜗牛完成签到,获得积分10
1秒前
1秒前
upup小李完成签到 ,获得积分10
2秒前
手帕很忙完成签到,获得积分10
2秒前
害羞含雁发布了新的文献求助10
2秒前
2秒前
zp完成签到 ,获得积分10
2秒前
ren发布了新的文献求助10
3秒前
Lucas应助踏实的小海豚采纳,获得10
3秒前
Lucas应助2go采纳,获得10
3秒前
Jasper应助日月山河永在采纳,获得10
4秒前
4秒前
5秒前
5秒前
慕青应助没有名称采纳,获得10
5秒前
HEIKU应助聪慧的机器猫采纳,获得10
5秒前
拼搏翠桃发布了新的文献求助10
6秒前
8个老登发布了新的文献求助10
7秒前
7秒前
hhy完成签到,获得积分10
7秒前
孙一雯发布了新的文献求助30
8秒前
8秒前
Xxxnnian完成签到,获得积分20
9秒前
fancy发布了新的文献求助10
9秒前
apple完成签到,获得积分10
9秒前
9秒前
oldlee发布了新的文献求助10
10秒前
斜杠武发布了新的文献求助10
10秒前
毕业就好发布了新的文献求助10
10秒前
wusanlinshi完成签到,获得积分20
11秒前
娜行发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672