丘脑底核
隐马尔可夫模型
脑深部刺激
帕金森病
模式识别(心理学)
局部场电位
计算机科学
神经科学
人工智能
语音识别
心理学
医学
疾病
病理
作者
Adam Zaidel,Alexander Spivak,Lavi Shpigelman,Hagai Bergman,Zvi Israel
摘要
Abstract Positive therapeutic response without adverse side effects to subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson's disease (PD) depends to a large extent on electrode location within the STN. The sensorimotor region of the STN (seemingly the preferred location for STN DBS) lies dorsolaterally, in a region also marked by distinct beta (13–30 Hz) oscillations in the parkinsonian state. In this study, we present a real‐time method to accurately demarcate subterritories of the STN during surgery, based on microelectrode recordings (MERs) and a Hidden Markov Model (HMM). Fifty‐six MER trajectories were used, obtained from 21 PD patients who underwent bilateral STN DBS implantation surgery. Root mean square (RMS) and power spectral density (PSD) of the MERs were used to train and test an HMM in identifying the dorsolateral oscillatory region (DLOR) and nonoscillatory subterritories within the STN. The HMM demarcations were compared to the decisions of a human expert. The HMM identified STN‐entry, the ventral boundary of the DLOR, and STN‐exit with an error of −0.09 ± 0.35, −0.27 ± 0.58, and −0.20 ± 0.33 mm, respectively (mean ± standard deviation), and with detection reliability (error < 1 mm) of 95, 86, and 91%, respectively. The HMM was successful despite a very coarse clustering method and was robust to parameter variation. Thus, using an HMM in conjunction with RMS and PSD measures of intraoperative MER can provide improved refinement of STN entry and exit in comparison with previously reported automatic methods, and introduces a novel (intra‐STN) detection of a distinct DLOR‐ventral boundary. © 2009 Movement Disorder Society
科研通智能强力驱动
Strongly Powered by AbleSci AI