亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes

伪氨基酸组成 亚科 氨基酸 两亲性 刀切重采样 序列(生物学) 作文(语言) 生物系统 化学 计算机科学 数学 生物 生物化学 统计 有机化学 哲学 估计员 基因 聚合物 语言学 二肽 共聚物
作者
Kuo‐Chen Chou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:21 (1): 10-19 被引量:912
标识
DOI:10.1093/bioinformatics/bth466
摘要

Abstract Motivation: With protein sequences entering into databanks at an explosive pace, the early determination of the family or subfamily class for a newly found enzyme molecule becomes important because this is directly related to the detailed information about which specific target it acts on, as well as to its catalytic process and biological function. Unfortunately, it is both time-consuming and costly to do so by experiments alone. In a previous study, the covariant-discriminant algorithm was introduced to identify the 16 subfamily classes of oxidoreductases. Although the results were quite encouraging, the entire prediction process was based on the amino acid composition alone without including any sequence-order information. Therefore, it is worthy of further investigation. Results: To incorporate the sequence-order effects into the predictor, the ‘amphiphilic pseudo amino acid composition’ is introduced to represent the statistical sample of a protein. The novel representation contains 20 + 2λ discrete numbers: the first 20 numbers are the components of the conventional amino acid composition; the next 2λ numbers are a set of correlation factors that reflect different hydrophobicity and hydrophilicity distribution patterns along a protein chain. Based on such a concept and formulation scheme, a new predictor is developed. It is shown by the self-consistency test, jackknife test and independent dataset tests that the success rates obtained by the new predictor are all significantly higher than those by the previous predictors. The significant enhancement in success rates also implies that the distribution of hydrophobicity and hydrophilicity of the amino acid residues along a protein chain plays a very important role to its structure and function. Contact: kchou@san.rr.com
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu完成签到,获得积分10
6秒前
qazcy发布了新的文献求助30
22秒前
生动的冰蓝应助liuzr采纳,获得10
28秒前
qazcy完成签到,获得积分10
34秒前
36秒前
liuzr发布了新的文献求助10
1分钟前
lily完成签到 ,获得积分10
1分钟前
无心的怜烟完成签到,获得积分10
1分钟前
风趣的如娆完成签到,获得积分10
1分钟前
aaa发布了新的文献求助10
1分钟前
汉堡包应助Hanna2021采纳,获得10
1分钟前
平常的小松鼠完成签到,获得积分20
2分钟前
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
annis完成签到,获得积分20
3分钟前
4分钟前
一月发布了新的文献求助10
4分钟前
柳东奇完成签到 ,获得积分10
4分钟前
4分钟前
火星上涔发布了新的文献求助10
4分钟前
前寒武完成签到,获得积分10
4分钟前
脑洞疼应助yyyjx采纳,获得10
4分钟前
啊z应助科研通管家采纳,获得10
4分钟前
完美世界应助annis采纳,获得10
5分钟前
5分钟前
annis发布了新的文献求助10
5分钟前
5分钟前
5分钟前
高君奇完成签到,获得积分10
5分钟前
高君奇发布了新的文献求助10
5分钟前
李健应助55555采纳,获得10
5分钟前
6分钟前
nullsci完成签到,获得积分10
6分钟前
efren1806完成签到,获得积分10
6分钟前
6分钟前
慕青应助smile采纳,获得10
6分钟前
6分钟前
55555发布了新的文献求助10
6分钟前
土豆泥完成签到 ,获得积分10
6分钟前
时尚问安完成签到 ,获得积分10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294496
求助须知:如何正确求助?哪些是违规求助? 2930438
关于积分的说明 8446030
捐赠科研通 2602612
什么是DOI,文献DOI怎么找? 1420680
科研通“疑难数据库(出版商)”最低求助积分说明 660644
邀请新用户注册赠送积分活动 643433