本征函数
特征向量
薛定谔方程
傅里叶变换
数学
哈密顿量(控制论)
计算
数学分析
光谱法
波函数
哈密尔顿矩阵
数值分析
基质(化学分析)
傅里叶级数
迭代法
物理
量子力学
对称矩阵
算法
数学优化
复合材料
材料科学
作者
Michael D. Feit,J. A. Fleck,Arno D. Steiger
标识
DOI:10.1016/0021-9991(82)90091-2
摘要
A new computational method for determining the eigenvalues and eigenfunctions of the Schrödinger equation is described. Conventional methods for solving this problem rely on diagonalization of a Hamiltonian matrix or iterative numerical solutions of a time independent wave equation. The new method, in contrast, is based on the spectral properties of solutions to the time-dependent Schrodinger equation. The method requires the computation of a correlation function 〈ψ(r, 0)| ψ(r, t)〉 from a numerical solution ψ(r, t). Fourier analysis of this correlation function reveals a set of resonant peaks that correspond to the stationary states of the system. Analysis of the location of these peaks reveals the eigenvalues with high accuracy. Additional Fourier transforms of ψ(r, t) with respect to time generate the eigenfunctions. The effectiveness of the method is demonstrated for a one-dimensional asymmetric double well potential and for the two-dimensional Hénon-Heiles potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI