计算机科学
分割
人工智能
稳健性(进化)
利用
水准点(测量)
噪音(视频)
模式识别(心理学)
图像分割
编码(集合论)
尺度空间分割
像素
任务(项目管理)
机器学习
迭代求精
基于分割的对象分类
图像(数学)
集合(抽象数据类型)
基因
经济
生物化学
化学
计算机安全
管理
程序设计语言
地理
大地测量学
作者
Shuailin Li,Zhitong Gao,Xuming He
出处
期刊:Cornell University - arXiv
日期:2021-01-01
标识
DOI:10.48550/arxiv.2107.10100
摘要
Learning segmentation from noisy labels is an important task for medical image analysis due to the difficulty in acquiring highquality annotations. Most existing methods neglect the pixel correlation and structural prior in segmentation, often producing noisy predictions around object boundaries. To address this, we adopt a superpixel representation and develop a robust iterative learning strategy that combines noise-aware training of segmentation network and noisy label refinement, both guided by the superpixels. This design enables us to exploit the structural constraints in segmentation labels and effectively mitigate the impact of label noise in learning. Experiments on two benchmarks show that our method outperforms recent state-of-the-art approaches, and achieves superior robustness in a wide range of label noises. Code is available at https://github.com/gaozhitong/SP_guided_Noisy_Label_Seg.
科研通智能强力驱动
Strongly Powered by AbleSci AI