Five-Year Project-Level Statewide Pavement Performance Forecasting Using a Two-Stage Machine Learning Approach Based on Long Short-Term Memory

人工神经网络 期限(时间) 计算机科学 阶段(地层学) 路面管理 基线(sea) 人工智能 机器学习 工程类 运输工程 量子力学 生物 海洋学 物理 地质学 古生物学
作者
Alexander W. Bukharin,Zhongyu Yang,Yichang Tsai
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (11): 280-290 被引量:7
标识
DOI:10.1177/03611981211017132
摘要

An accurate pavement performance forecasting model is essential for transportation agencies to perform pavement maintenance, rehabilitation, and reconstruction (MR&R) in a predictive and cost-effective manner. Although some forecasting methods have been successful in forecasting short-term (e.g., 1–2 year) pavement conditions at either the project level or network level, accurately forecasting long-term (e.g., 3–5 year) pavement conditions at both project level and network level under real-world conditions is still challenging. Thus, the goal of this paper is to propose a two-stage machine learning approach based on long short-term memory (LSTM) to achieve not only the short-term, but also the long-term, forecasting accuracy at both the project level and network level. The proposed method involves LSTM in the first stage and an artificial neural network (ANN) in the second stage, resulting into a two-stage model. The LSTM first learns the pattern of pavement deterioration based on sequential data (e.g., historical pavement conditions). Then, the ANN further learns the impacts of roadway factors (e.g., traffic parameter, pavement surface type, working district) to adjust the final forecasting results. The accuracy of the proposed two-stage model has been compared with baseline machine learning methods in 2016 on a large, statewide Florida dataset at both the project level and network level to demonstrate the superior capability of the proposed method. In addition, the proposed method has been tested further to forecast future (5-year) pavement conditions (2016–2020). Results show a promising forecasting accuracy for both the short-term and long-term in comparison with the ground truth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Doctor_jie完成签到 ,获得积分10
3秒前
yjx关注了科研通微信公众号
3秒前
脑洞疼应助ksq采纳,获得10
3秒前
高贵水壶发布了新的文献求助10
3秒前
3秒前
乔钰涵发布了新的文献求助10
3秒前
氵王完成签到 ,获得积分10
4秒前
莫莫发布了新的文献求助10
4秒前
Orange应助无心的仙人掌采纳,获得10
5秒前
rudjs发布了新的文献求助10
5秒前
完美世界应助小成采纳,获得100
5秒前
今后应助诸恶莫作采纳,获得10
6秒前
7秒前
椰子完成签到,获得积分10
7秒前
猪猪hero发布了新的文献求助30
7秒前
8秒前
科研通AI6应助大力的冥幽采纳,获得10
8秒前
高贵水壶完成签到,获得积分10
9秒前
踏实的咖啡应助陶醉清采纳,获得10
9秒前
踏实的咖啡应助陶醉清采纳,获得10
9秒前
踏实的咖啡应助陶醉清采纳,获得10
9秒前
心心应助加菲丰丰采纳,获得10
9秒前
10秒前
若离发布了新的文献求助10
11秒前
11秒前
冷傲的小小完成签到,获得积分10
11秒前
wll1091完成签到 ,获得积分10
11秒前
11秒前
12秒前
不吃橘子发布了新的文献求助10
13秒前
14秒前
123完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
17秒前
机灵的白羊完成签到 ,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126