Five-Year Project-Level Statewide Pavement Performance Forecasting Using a Two-Stage Machine Learning Approach Based on Long Short-Term Memory

人工神经网络 期限(时间) 计算机科学 阶段(地层学) 路面管理 基线(sea) 人工智能 机器学习 工程类 运输工程 量子力学 生物 海洋学 物理 地质学 古生物学
作者
Alexander W. Bukharin,Zhongyu Yang,Yichang Tsai
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (11): 280-290 被引量:7
标识
DOI:10.1177/03611981211017132
摘要

An accurate pavement performance forecasting model is essential for transportation agencies to perform pavement maintenance, rehabilitation, and reconstruction (MR&R) in a predictive and cost-effective manner. Although some forecasting methods have been successful in forecasting short-term (e.g., 1–2 year) pavement conditions at either the project level or network level, accurately forecasting long-term (e.g., 3–5 year) pavement conditions at both project level and network level under real-world conditions is still challenging. Thus, the goal of this paper is to propose a two-stage machine learning approach based on long short-term memory (LSTM) to achieve not only the short-term, but also the long-term, forecasting accuracy at both the project level and network level. The proposed method involves LSTM in the first stage and an artificial neural network (ANN) in the second stage, resulting into a two-stage model. The LSTM first learns the pattern of pavement deterioration based on sequential data (e.g., historical pavement conditions). Then, the ANN further learns the impacts of roadway factors (e.g., traffic parameter, pavement surface type, working district) to adjust the final forecasting results. The accuracy of the proposed two-stage model has been compared with baseline machine learning methods in 2016 on a large, statewide Florida dataset at both the project level and network level to demonstrate the superior capability of the proposed method. In addition, the proposed method has been tested further to forecast future (5-year) pavement conditions (2016–2020). Results show a promising forecasting accuracy for both the short-term and long-term in comparison with the ground truth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoz完成签到,获得积分10
刚刚
刚刚
xmhxpz完成签到,获得积分10
2秒前
尹梦成完成签到,获得积分10
3秒前
SciGPT应助MOD采纳,获得10
3秒前
脑洞疼应助aa121599采纳,获得10
4秒前
xiaoz发布了新的文献求助30
4秒前
11发布了新的文献求助10
4秒前
6秒前
林天完成签到,获得积分10
7秒前
健康的人达完成签到,获得积分10
9秒前
11秒前
12秒前
冷傲手套发布了新的文献求助30
12秒前
汉堡包应助hanchangcun采纳,获得10
13秒前
14秒前
16秒前
爆米花应助c程序语言采纳,获得10
17秒前
17秒前
行者无疆发布了新的文献求助10
18秒前
沈格完成签到,获得积分10
18秒前
翻斗花园612完成签到,获得积分10
18秒前
慕子完成签到 ,获得积分10
19秒前
kitty完成签到 ,获得积分10
19秒前
21秒前
26秒前
28秒前
28秒前
小zhu完成签到,获得积分10
29秒前
钟冠完成签到,获得积分10
31秒前
洪山老狗完成签到,获得积分10
33秒前
MOD发布了新的文献求助10
34秒前
脑洞疼应助xiaoxixiccccc采纳,获得10
34秒前
万能图书馆应助Umind采纳,获得10
34秒前
35秒前
Zhou完成签到,获得积分10
35秒前
35秒前
田様应助qiany采纳,获得10
36秒前
c程序语言发布了新的文献求助10
39秒前
冷傲手套完成签到,获得积分20
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870