亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Five-Year Project-Level Statewide Pavement Performance Forecasting Using a Two-Stage Machine Learning Approach Based on Long Short-Term Memory

人工神经网络 期限(时间) 计算机科学 阶段(地层学) 路面管理 基线(sea) 人工智能 机器学习 工程类 运输工程 量子力学 生物 海洋学 物理 地质学 古生物学
作者
Alexander W. Bukharin,Zhongyu Yang,Yichang Tsai
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (11): 280-290 被引量:7
标识
DOI:10.1177/03611981211017132
摘要

An accurate pavement performance forecasting model is essential for transportation agencies to perform pavement maintenance, rehabilitation, and reconstruction (MR&R) in a predictive and cost-effective manner. Although some forecasting methods have been successful in forecasting short-term (e.g., 1–2 year) pavement conditions at either the project level or network level, accurately forecasting long-term (e.g., 3–5 year) pavement conditions at both project level and network level under real-world conditions is still challenging. Thus, the goal of this paper is to propose a two-stage machine learning approach based on long short-term memory (LSTM) to achieve not only the short-term, but also the long-term, forecasting accuracy at both the project level and network level. The proposed method involves LSTM in the first stage and an artificial neural network (ANN) in the second stage, resulting into a two-stage model. The LSTM first learns the pattern of pavement deterioration based on sequential data (e.g., historical pavement conditions). Then, the ANN further learns the impacts of roadway factors (e.g., traffic parameter, pavement surface type, working district) to adjust the final forecasting results. The accuracy of the proposed two-stage model has been compared with baseline machine learning methods in 2016 on a large, statewide Florida dataset at both the project level and network level to demonstrate the superior capability of the proposed method. In addition, the proposed method has been tested further to forecast future (5-year) pavement conditions (2016–2020). Results show a promising forecasting accuracy for both the short-term and long-term in comparison with the ground truth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
大气的剑鬼完成签到,获得积分10
10秒前
林狗完成签到 ,获得积分10
16秒前
22秒前
1分钟前
1分钟前
1分钟前
1分钟前
乐洋洋发布了新的文献求助10
1分钟前
1分钟前
hank完成签到,获得积分10
1分钟前
sirius应助科研通管家采纳,获得10
2分钟前
LPH01发布了新的文献求助10
2分钟前
机智明辉完成签到,获得积分10
2分钟前
2分钟前
不安映秋发布了新的文献求助10
2分钟前
小将军完成签到,获得积分10
2分钟前
3分钟前
3分钟前
..发布了新的文献求助10
3分钟前
柏莉发布了新的文献求助10
3分钟前
Yaon-Xu完成签到,获得积分10
3分钟前
3分钟前
YUYUYU发布了新的文献求助10
3分钟前
3分钟前
充电宝应助Anna Jenna采纳,获得10
4分钟前
4分钟前
Anna Jenna发布了新的文献求助10
4分钟前
爆米花应助Anna Jenna采纳,获得10
4分钟前
薇笑不慌完成签到,获得积分10
4分钟前
爆米花应助dd19930403采纳,获得30
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
dd19930403发布了新的文献求助30
4分钟前
tian发布了新的文献求助10
4分钟前
menglanjun完成签到,获得积分10
4分钟前
minuxSCI完成签到,获得积分10
4分钟前
dd19930403完成签到 ,获得积分20
5分钟前
Benhnhk21完成签到,获得积分10
5分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806917
捐赠科研通 2449807
什么是DOI,文献DOI怎么找? 1303487
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314