Five-Year Project-Level Statewide Pavement Performance Forecasting Using a Two-Stage Machine Learning Approach Based on Long Short-Term Memory

人工神经网络 期限(时间) 计算机科学 阶段(地层学) 路面管理 基线(sea) 人工智能 机器学习 工程类 运输工程 量子力学 生物 海洋学 物理 地质学 古生物学
作者
Alexander W. Bukharin,Zhongyu Yang,Yichang Tsai
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (11): 280-290 被引量:7
标识
DOI:10.1177/03611981211017132
摘要

An accurate pavement performance forecasting model is essential for transportation agencies to perform pavement maintenance, rehabilitation, and reconstruction (MR&R) in a predictive and cost-effective manner. Although some forecasting methods have been successful in forecasting short-term (e.g., 1–2 year) pavement conditions at either the project level or network level, accurately forecasting long-term (e.g., 3–5 year) pavement conditions at both project level and network level under real-world conditions is still challenging. Thus, the goal of this paper is to propose a two-stage machine learning approach based on long short-term memory (LSTM) to achieve not only the short-term, but also the long-term, forecasting accuracy at both the project level and network level. The proposed method involves LSTM in the first stage and an artificial neural network (ANN) in the second stage, resulting into a two-stage model. The LSTM first learns the pattern of pavement deterioration based on sequential data (e.g., historical pavement conditions). Then, the ANN further learns the impacts of roadway factors (e.g., traffic parameter, pavement surface type, working district) to adjust the final forecasting results. The accuracy of the proposed two-stage model has been compared with baseline machine learning methods in 2016 on a large, statewide Florida dataset at both the project level and network level to demonstrate the superior capability of the proposed method. In addition, the proposed method has been tested further to forecast future (5-year) pavement conditions (2016–2020). Results show a promising forecasting accuracy for both the short-term and long-term in comparison with the ground truth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助ZZY采纳,获得10
1秒前
1秒前
geyuanhong完成签到,获得积分10
1秒前
江南发布了新的文献求助10
1秒前
善学以致用应助star采纳,获得30
1秒前
大模型应助谨慎的雨梅采纳,获得10
2秒前
2秒前
KK发布了新的文献求助10
2秒前
2秒前
sopha发布了新的文献求助10
3秒前
老温完成签到,获得积分10
3秒前
秋风烈马发布了新的文献求助10
4秒前
WB87应助平平采纳,获得10
4秒前
各位大牛帮帮忙完成签到,获得积分10
5秒前
刻苦大侠发布了新的文献求助10
5秒前
顾矜应助687采纳,获得10
5秒前
张晓发布了新的文献求助10
6秒前
吧唧一笑的go完成签到,获得积分10
6秒前
6秒前
6秒前
Owen应助半缘君采纳,获得10
7秒前
7秒前
乐乐应助nnyyaaa采纳,获得20
8秒前
量子星尘发布了新的文献求助10
10秒前
专注乐巧发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
Verritis发布了新的文献求助10
13秒前
秋风烈马完成签到,获得积分20
14秒前
14秒前
一叶扁舟0147完成签到,获得积分10
14秒前
年轻晟睿发布了新的文献求助10
15秒前
15秒前
莫言发布了新的文献求助10
15秒前
认真的柏柳完成签到 ,获得积分10
15秒前
16秒前
xieyan发布了新的文献求助10
17秒前
18秒前
AN发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431074
求助须知:如何正确求助?哪些是违规求助? 4544193
关于积分的说明 14191176
捐赠科研通 4462733
什么是DOI,文献DOI怎么找? 2446624
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414596