Five-Year Project-Level Statewide Pavement Performance Forecasting Using a Two-Stage Machine Learning Approach Based on Long Short-Term Memory

人工神经网络 期限(时间) 计算机科学 阶段(地层学) 路面管理 基线(sea) 人工智能 机器学习 工程类 运输工程 量子力学 生物 海洋学 物理 地质学 古生物学
作者
Alexander W. Bukharin,Zhongyu Yang,Yichang Tsai
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2675 (11): 280-290 被引量:7
标识
DOI:10.1177/03611981211017132
摘要

An accurate pavement performance forecasting model is essential for transportation agencies to perform pavement maintenance, rehabilitation, and reconstruction (MR&R) in a predictive and cost-effective manner. Although some forecasting methods have been successful in forecasting short-term (e.g., 1–2 year) pavement conditions at either the project level or network level, accurately forecasting long-term (e.g., 3–5 year) pavement conditions at both project level and network level under real-world conditions is still challenging. Thus, the goal of this paper is to propose a two-stage machine learning approach based on long short-term memory (LSTM) to achieve not only the short-term, but also the long-term, forecasting accuracy at both the project level and network level. The proposed method involves LSTM in the first stage and an artificial neural network (ANN) in the second stage, resulting into a two-stage model. The LSTM first learns the pattern of pavement deterioration based on sequential data (e.g., historical pavement conditions). Then, the ANN further learns the impacts of roadway factors (e.g., traffic parameter, pavement surface type, working district) to adjust the final forecasting results. The accuracy of the proposed two-stage model has been compared with baseline machine learning methods in 2016 on a large, statewide Florida dataset at both the project level and network level to demonstrate the superior capability of the proposed method. In addition, the proposed method has been tested further to forecast future (5-year) pavement conditions (2016–2020). Results show a promising forecasting accuracy for both the short-term and long-term in comparison with the ground truth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang35关注了科研通微信公众号
刚刚
Hello应助东华帝君采纳,获得50
1秒前
林业光魔发布了新的文献求助10
1秒前
1秒前
2秒前
lzytt完成签到 ,获得积分20
3秒前
biov完成签到,获得积分10
3秒前
Ava应助TING采纳,获得10
3秒前
3秒前
qianmu发布了新的文献求助10
3秒前
俊逸沛菡完成签到 ,获得积分10
3秒前
詹妮完成签到,获得积分10
3秒前
4秒前
CMUSK完成签到,获得积分10
4秒前
wyr完成签到,获得积分10
5秒前
核桃应助郝大大鸡排采纳,获得10
6秒前
zhuyuan发布了新的文献求助10
6秒前
瓜瓜程完成签到 ,获得积分10
6秒前
SYLH应助霹雳小柱采纳,获得10
6秒前
由怜雪发布了新的文献求助10
6秒前
hearan发布了新的文献求助10
6秒前
man发布了新的文献求助10
6秒前
义气凝阳完成签到,获得积分10
7秒前
博修发布了新的文献求助10
7秒前
8秒前
hzwyyds应助yshj采纳,获得10
8秒前
8秒前
8秒前
utgu完成签到,获得积分10
9秒前
lin发布了新的文献求助10
9秒前
pluto应助王永涛采纳,获得10
9秒前
寒冬完成签到,获得积分10
9秒前
10秒前
10秒前
有一天发布了新的文献求助50
10秒前
11秒前
Gmhoo_发布了新的文献求助10
11秒前
让我康康完成签到 ,获得积分10
12秒前
端庄谷南完成签到 ,获得积分10
12秒前
xm发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993