Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning

对抗制 计算机科学 稳健性(进化) 人工智能 对抗性机器学习 机器学习 生物化学 基因 化学
作者
Haibin Wu,Xü Liu,Andy T. Liu,Zhiyong Wu,Helen Meng,Hung-yi Lee
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 202-217 被引量:11
标识
DOI:10.1109/taslp.2021.3133189
摘要

Previous works have shown that automatic speaker verification (ASV) is seriously vulnerable to malicious spoofing attacks, such as replay, synthetic speech, and recently emerged adversarial attacks. Great efforts have been dedicated to defending ASV against replay and synthetic speech; however, only a few approaches have been explored to deal with adversarial attacks. All the existing approaches to tackle adversarial attacks for ASV require the knowledge for adversarial samples generation, but it is impractical for defenders to know the exact attack algorithms that are applied by the in-the-wild attackers. This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms. Inspired by self-supervised learning models (SSLMs) that possess the merits of alleviating the superficial noise in the inputs and reconstructing clean samples from the interrupted ones, this work regards adversarial perturbations as one kind of noise and conducts adversarial defense for ASV by SSLMs. Specifically, we propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection. The purification module aims at alleviating the adversarial perturbations in the samples and pulling the contaminated adversarial inputs back towards the decision boundary. Experimental results show that our proposed purification module effectively counters adversarial attacks and outperforms traditional filters from both alleviating the adversarial noise and maintaining the performance of genuine samples. The detection module aims at detecting adversarial samples from genuine ones based on the statistical properties of ASV scores derived by a unique ASV integrating with different number of SSLMs. Experimental results show that our detection module helps shield the ASV by detecting adversarial samples. Both purification and detection methods are helpful for defending against different kinds of attack algorithms. Moreover, since there is no common metric for evaluating the ASV performance under adversarial attacks, this work also formalizes evaluation metrics for adversarial defense considering both purification and detection based approaches into account. We sincerely encourage future works to benchmark their approaches based on the proposed evaluation framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WQ应助wang77采纳,获得10
刚刚
lsy发布了新的文献求助10
3秒前
科研通AI5应助趙途嘵生采纳,获得10
3秒前
Star完成签到,获得积分10
4秒前
天蓝色与柠檬黄完成签到,获得积分20
5秒前
6秒前
cherrychou完成签到,获得积分10
7秒前
coco完成签到 ,获得积分10
9秒前
小蘑菇应助研友_Lpa2On采纳,获得10
12秒前
ed发布了新的文献求助10
12秒前
13秒前
深情安青应助天玄一刀采纳,获得10
13秒前
空曲完成签到,获得积分10
15秒前
shirley要奋斗完成签到 ,获得积分10
16秒前
17秒前
吕嫣娆完成签到 ,获得积分10
18秒前
上杉绘梨衣完成签到,获得积分10
19秒前
空曲发布了新的文献求助10
19秒前
20秒前
沐颜完成签到 ,获得积分10
21秒前
遗憾交给时间完成签到,获得积分10
22秒前
iota完成签到,获得积分10
24秒前
范范完成签到,获得积分10
25秒前
lanbing802完成签到,获得积分10
25秒前
25秒前
趙途嘵生发布了新的文献求助10
26秒前
28秒前
复杂的方盒完成签到 ,获得积分10
30秒前
31秒前
幽默果汁发布了新的文献求助10
32秒前
烟花应助科研通管家采纳,获得10
33秒前
Orange应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
田様应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
香蕉觅云应助科研通管家采纳,获得20
33秒前
wqc2060完成签到,获得积分10
34秒前
余味完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571384
求助须知:如何正确求助?哪些是违规求助? 3141954
关于积分的说明 9445048
捐赠科研通 2843411
什么是DOI,文献DOI怎么找? 1562840
邀请新用户注册赠送积分活动 731366
科研通“疑难数据库(出版商)”最低求助积分说明 718524