系统发育树
启发式
树(集合论)
人工智能
计算机科学
序列(生物学)
生物学数据
树重组
人工神经网络
系统发育网络
代表(政治)
多序列比对
模式识别(心理学)
机器学习
序列比对
数学
生物
生物信息学
组合数学
肽序列
政治
基因
生物化学
遗传学
法学
政治学
标识
DOI:10.1145/3457682.3457704
摘要
Reconstruction of phylogenetic tree from biological sequences is a fundamental step in molecular biology, but it is computationally exhausting. Our goal is to use neural network to learn the heuristic strategy of phylogenetic tree reconstruction algorithm. We propose an attention model to learn heuristic strategies for constructing circular ordering related to phylogenetic trees. We use alignment-free K-mer frequency vector representation to represent biological sequences and use unlabeled sequence data sets to train attention model through reinforcement learning. Comparing with traditional methods, our approach is alignment-free and can be easily extended to large-scale data with computational efficiency. With the rapid growth of public biological sequence data, our method provides a potential way to reconstruct phylogenetic tree.
科研通智能强力驱动
Strongly Powered by AbleSci AI