计算机科学
山崩
分割
人工智能
遥感
模式识别(心理学)
机器学习
数据挖掘
地质学
岩土工程
作者
Bowen Du,Zirong Zhao,Xiao Hu,Guanghui Wu,Liangzhe Han,Leilei Sun,Qiang Gao
标识
DOI:10.1016/j.cageo.2021.104860
摘要
The visual characteristics of landslide susceptibility have not yet been fully explored. Professional or trained technicians have to take much time and effort to interpret remote sensing images and locate landslides accordingly. Although conventional machine learning methods based on hand-crafted features for landslide susceptibility prediction (LSP) have acquired remarkable performance, they have certain requirements for prior knowledge. Aiming to learn complex and inherent visual patterns of landslides through minimal manual intervention and achieve fine-grained prediction, in this paper, we define LSP as a semantic segmentation problem on optical remote sensing images. Six widely used semantic segmentation models including Fully Convolutional Network, U-Net, Pyramid Scene Parsing Network, Global Convolutional Network (GCN), DeepLab v3 and DeepLab v3+ are introduced and evaluated for LSP. As the lack of landslide datasets, an open labeled landslide dataset of remote sensing imagery is created for research. The results show that GCN and DeepLab v3 are more applicable for this problem scenario, and the best Mean Intersection-over-Union and Pixel Accuracy of models are 54.2% and 74.0% respectively, which could be further improved by more targeted network architectures. In conclusion, semantic segmentation methods are demonstrated to be effctive for predicting new potential landslides based on remote sensing images. • Landslide susceptibility prediction is formulated as a semantic segmentation problem. • Six popular semantic segmentation methods are applied in landslide detection. • Extensive experiments are conducted to evaluate the performance of models. • An open labeled remote sensing landslide dataset is created for research.
科研通智能强力驱动
Strongly Powered by AbleSci AI