亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Landslide susceptibility prediction based on image semantic segmentation

计算机科学 山崩 分割 人工智能 遥感 模式识别(心理学) 机器学习 数据挖掘 地质学 岩土工程
作者
Bowen Du,Zirong Zhao,Xiao Hu,Guanghui Wu,Liangzhe Han,Leilei Sun,Qiang Gao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:155: 104860-104860 被引量:11
标识
DOI:10.1016/j.cageo.2021.104860
摘要

The visual characteristics of landslide susceptibility have not yet been fully explored. Professional or trained technicians have to take much time and effort to interpret remote sensing images and locate landslides accordingly. Although conventional machine learning methods based on hand-crafted features for landslide susceptibility prediction (LSP) have acquired remarkable performance, they have certain requirements for prior knowledge. Aiming to learn complex and inherent visual patterns of landslides through minimal manual intervention and achieve fine-grained prediction, in this paper, we define LSP as a semantic segmentation problem on optical remote sensing images. Six widely used semantic segmentation models including Fully Convolutional Network, U-Net, Pyramid Scene Parsing Network, Global Convolutional Network (GCN), DeepLab v3 and DeepLab v3+ are introduced and evaluated for LSP. As the lack of landslide datasets, an open labeled landslide dataset of remote sensing imagery is created for research. The results show that GCN and DeepLab v3 are more applicable for this problem scenario, and the best Mean Intersection-over-Union and Pixel Accuracy of models are 54.2% and 74.0% respectively, which could be further improved by more targeted network architectures. In conclusion, semantic segmentation methods are demonstrated to be effctive for predicting new potential landslides based on remote sensing images. • Landslide susceptibility prediction is formulated as a semantic segmentation problem. • Six popular semantic segmentation methods are applied in landslide detection. • Extensive experiments are conducted to evaluate the performance of models. • An open labeled remote sensing landslide dataset is created for research.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助平淡小丸子采纳,获得10
刚刚
王叮叮应助LS采纳,获得50
刚刚
Yanssrer完成签到,获得积分10
刚刚
不知完成签到 ,获得积分10
1秒前
庆何逐发布了新的文献求助10
2秒前
leo完成签到 ,获得积分10
3秒前
天天快乐应助莘莘学子采纳,获得10
7秒前
10秒前
YQP发布了新的文献求助10
16秒前
21秒前
25秒前
庆何逐发布了新的文献求助10
26秒前
童话金发布了新的文献求助10
27秒前
Bressanone完成签到,获得积分10
28秒前
123发布了新的文献求助10
29秒前
31秒前
31秒前
高山流水完成签到,获得积分10
34秒前
端庄天玉发布了新的文献求助10
34秒前
莘莘学子发布了新的文献求助10
34秒前
兜兜完成签到 ,获得积分10
37秒前
花陵完成签到 ,获得积分10
37秒前
上官若男应助端庄天玉采纳,获得10
41秒前
轻松的芯完成签到 ,获得积分0
42秒前
飞龙在天完成签到,获得积分10
43秒前
完美世界应助Zenia采纳,获得10
44秒前
吼吼哈嘿完成签到 ,获得积分10
44秒前
酷炫语芹完成签到 ,获得积分10
48秒前
51秒前
王者归来完成签到,获得积分10
53秒前
梦梦的小可爱完成签到 ,获得积分10
55秒前
完美世界应助庆何逐采纳,获得10
56秒前
Zenia发布了新的文献求助10
56秒前
钟江完成签到 ,获得积分10
58秒前
x夏天完成签到 ,获得积分10
1分钟前
顾矜应助赶紧毕业采纳,获得10
1分钟前
wz完成签到,获得积分20
1分钟前
1分钟前
傻子也能搞学术吗完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880298
求助须知:如何正确求助?哪些是违规求助? 6570570
关于积分的说明 15689570
捐赠科研通 4999982
什么是DOI,文献DOI怎么找? 2694118
邀请新用户注册赠送积分活动 1635942
关于科研通互助平台的介绍 1593374