Landslide susceptibility prediction based on image semantic segmentation

计算机科学 山崩 分割 人工智能 遥感 模式识别(心理学) 机器学习 数据挖掘 地质学 岩土工程
作者
Bowen Du,Zirong Zhao,Xiao Hu,Guanghui Wu,Liangzhe Han,Leilei Sun,Qiang Gao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:155: 104860-104860 被引量:11
标识
DOI:10.1016/j.cageo.2021.104860
摘要

The visual characteristics of landslide susceptibility have not yet been fully explored. Professional or trained technicians have to take much time and effort to interpret remote sensing images and locate landslides accordingly. Although conventional machine learning methods based on hand-crafted features for landslide susceptibility prediction (LSP) have acquired remarkable performance, they have certain requirements for prior knowledge. Aiming to learn complex and inherent visual patterns of landslides through minimal manual intervention and achieve fine-grained prediction, in this paper, we define LSP as a semantic segmentation problem on optical remote sensing images. Six widely used semantic segmentation models including Fully Convolutional Network, U-Net, Pyramid Scene Parsing Network, Global Convolutional Network (GCN), DeepLab v3 and DeepLab v3+ are introduced and evaluated for LSP. As the lack of landslide datasets, an open labeled landslide dataset of remote sensing imagery is created for research. The results show that GCN and DeepLab v3 are more applicable for this problem scenario, and the best Mean Intersection-over-Union and Pixel Accuracy of models are 54.2% and 74.0% respectively, which could be further improved by more targeted network architectures. In conclusion, semantic segmentation methods are demonstrated to be effctive for predicting new potential landslides based on remote sensing images. • Landslide susceptibility prediction is formulated as a semantic segmentation problem. • Six popular semantic segmentation methods are applied in landslide detection. • Extensive experiments are conducted to evaluate the performance of models. • An open labeled remote sensing landslide dataset is created for research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaozhuzhu完成签到,获得积分10
刚刚
1秒前
香蕉觅云应助SwapExisting采纳,获得10
1秒前
小飞侠发布了新的文献求助20
5秒前
5秒前
科研通AI2S应助lili采纳,获得10
7秒前
7秒前
Mito2009发布了新的文献求助10
8秒前
夏夏发布了新的文献求助10
8秒前
12秒前
12秒前
丘比特应助lxl采纳,获得10
13秒前
小吉完成签到,获得积分10
16秒前
科研菜牙发布了新的文献求助10
17秒前
你好啊发布了新的文献求助10
17秒前
中午吃什么完成签到,获得积分10
20秒前
jwq完成签到,获得积分10
20秒前
所所应助畅快访蕊采纳,获得10
20秒前
张雨露完成签到 ,获得积分10
23秒前
张岱帅z完成签到,获得积分10
23秒前
希望天下0贩的0应助jwq采纳,获得10
24秒前
充电宝应助你好啊采纳,获得10
25秒前
领导范儿应助麻薯头头采纳,获得10
26秒前
28秒前
meiyang完成签到 ,获得积分10
29秒前
在水一方应助fuzhy采纳,获得10
30秒前
Ava应助要减肥人杰采纳,获得10
31秒前
32秒前
tingyi完成签到,获得积分10
34秒前
36秒前
鳗鱼怀蕊完成签到,获得积分10
36秒前
畅快访蕊发布了新的文献求助10
37秒前
一叶扁舟完成签到,获得积分10
37秒前
Owen应助bestbanana采纳,获得10
37秒前
fuzhy完成签到,获得积分10
38秒前
彭于晏应助科研通管家采纳,获得10
38秒前
丘比特应助科研通管家采纳,获得10
38秒前
0128lun应助科研通管家采纳,获得10
38秒前
情怀应助科研通管家采纳,获得10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023