Landslide susceptibility prediction based on image semantic segmentation

计算机科学 山崩 分割 人工智能 遥感 模式识别(心理学) 机器学习 数据挖掘 地质学 岩土工程
作者
Bowen Du,Zirong Zhao,Xiao Hu,Guanghui Wu,Liangzhe Han,Leilei Sun,Qiang Gao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:155: 104860-104860 被引量:11
标识
DOI:10.1016/j.cageo.2021.104860
摘要

The visual characteristics of landslide susceptibility have not yet been fully explored. Professional or trained technicians have to take much time and effort to interpret remote sensing images and locate landslides accordingly. Although conventional machine learning methods based on hand-crafted features for landslide susceptibility prediction (LSP) have acquired remarkable performance, they have certain requirements for prior knowledge. Aiming to learn complex and inherent visual patterns of landslides through minimal manual intervention and achieve fine-grained prediction, in this paper, we define LSP as a semantic segmentation problem on optical remote sensing images. Six widely used semantic segmentation models including Fully Convolutional Network, U-Net, Pyramid Scene Parsing Network, Global Convolutional Network (GCN), DeepLab v3 and DeepLab v3+ are introduced and evaluated for LSP. As the lack of landslide datasets, an open labeled landslide dataset of remote sensing imagery is created for research. The results show that GCN and DeepLab v3 are more applicable for this problem scenario, and the best Mean Intersection-over-Union and Pixel Accuracy of models are 54.2% and 74.0% respectively, which could be further improved by more targeted network architectures. In conclusion, semantic segmentation methods are demonstrated to be effctive for predicting new potential landslides based on remote sensing images. • Landslide susceptibility prediction is formulated as a semantic segmentation problem. • Six popular semantic segmentation methods are applied in landslide detection. • Extensive experiments are conducted to evaluate the performance of models. • An open labeled remote sensing landslide dataset is created for research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助小吴采纳,获得10
刚刚
1秒前
1秒前
钼yanghua发布了新的文献求助10
2秒前
刘栋完成签到,获得积分10
2秒前
2秒前
干鞅发布了新的文献求助10
3秒前
蒋蒋蒋发布了新的文献求助10
3秒前
化雪彼岸发布了新的文献求助10
3秒前
无花果应助薛晓博采纳,获得10
3秒前
Cker完成签到,获得积分10
4秒前
蜡笔小新发布了新的文献求助10
4秒前
klony完成签到,获得积分10
4秒前
阿达完成签到,获得积分10
5秒前
玄武岩完成签到,获得积分10
5秒前
5秒前
斯文败类应助瓢瓢采纳,获得10
5秒前
6秒前
L丶完成签到,获得积分10
6秒前
An完成签到,获得积分10
7秒前
小二郎应助学术小白采纳,获得30
7秒前
芽芽豆发布了新的文献求助10
7秒前
搜集达人应助qing采纳,获得10
8秒前
我的小伙伴应助胡子采纳,获得50
8秒前
桐桐应助mo采纳,获得10
8秒前
zxw完成签到,获得积分10
8秒前
chenxiaolei发布了新的文献求助10
8秒前
mumu发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
sile完成签到,获得积分10
9秒前
天气完成签到,获得积分10
10秒前
可爱的函函应助jinshijie采纳,获得10
10秒前
香蕉觅云应助CY采纳,获得10
11秒前
orixero应助husi采纳,获得10
11秒前
11秒前
55155255完成签到,获得积分10
11秒前
隐形曼青应助beibei111采纳,获得10
12秒前
脑洞疼应助风中静白采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513050
求助须知:如何正确求助?哪些是违规求助? 4607382
关于积分的说明 14504952
捐赠科研通 4542911
什么是DOI,文献DOI怎么找? 2489237
邀请新用户注册赠送积分活动 1471256
关于科研通互助平台的介绍 1443307