已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Landslide susceptibility prediction based on image semantic segmentation

计算机科学 山崩 分割 人工智能 遥感 模式识别(心理学) 机器学习 数据挖掘 地质学 岩土工程
作者
Bowen Du,Zirong Zhao,Xiao Hu,Guanghui Wu,Liangzhe Han,Leilei Sun,Qiang Gao
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:155: 104860-104860 被引量:11
标识
DOI:10.1016/j.cageo.2021.104860
摘要

The visual characteristics of landslide susceptibility have not yet been fully explored. Professional or trained technicians have to take much time and effort to interpret remote sensing images and locate landslides accordingly. Although conventional machine learning methods based on hand-crafted features for landslide susceptibility prediction (LSP) have acquired remarkable performance, they have certain requirements for prior knowledge. Aiming to learn complex and inherent visual patterns of landslides through minimal manual intervention and achieve fine-grained prediction, in this paper, we define LSP as a semantic segmentation problem on optical remote sensing images. Six widely used semantic segmentation models including Fully Convolutional Network, U-Net, Pyramid Scene Parsing Network, Global Convolutional Network (GCN), DeepLab v3 and DeepLab v3+ are introduced and evaluated for LSP. As the lack of landslide datasets, an open labeled landslide dataset of remote sensing imagery is created for research. The results show that GCN and DeepLab v3 are more applicable for this problem scenario, and the best Mean Intersection-over-Union and Pixel Accuracy of models are 54.2% and 74.0% respectively, which could be further improved by more targeted network architectures. In conclusion, semantic segmentation methods are demonstrated to be effctive for predicting new potential landslides based on remote sensing images. • Landslide susceptibility prediction is formulated as a semantic segmentation problem. • Six popular semantic segmentation methods are applied in landslide detection. • Extensive experiments are conducted to evaluate the performance of models. • An open labeled remote sensing landslide dataset is created for research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bono完成签到 ,获得积分10
1秒前
character577发布了新的文献求助10
2秒前
所所应助zzzzz采纳,获得10
2秒前
冷酷哈密瓜完成签到,获得积分10
2秒前
月初完成签到,获得积分10
5秒前
扶摇完成签到 ,获得积分10
6秒前
6秒前
LIU完成签到 ,获得积分10
7秒前
千跃应助Rocc采纳,获得10
7秒前
君寻完成签到 ,获得积分10
7秒前
归海梦岚完成签到,获得积分0
8秒前
8秒前
dddd完成签到 ,获得积分10
9秒前
10秒前
14秒前
汤泽琪发布了新的文献求助10
16秒前
16秒前
懒大王完成签到 ,获得积分10
17秒前
没有昵称完成签到 ,获得积分10
18秒前
HYT发布了新的文献求助10
18秒前
18秒前
啦啦啦啦完成签到,获得积分10
20秒前
Ling完成签到 ,获得积分10
20秒前
潇洒绿蕊完成签到,获得积分10
20秒前
抗压兔完成签到 ,获得积分10
22秒前
黄晓悦发布了新的文献求助30
23秒前
111完成签到 ,获得积分10
24秒前
24秒前
李键刚完成签到 ,获得积分10
24秒前
小玲子发布了新的文献求助10
24秒前
25秒前
熬夜猝死的我完成签到 ,获得积分10
25秒前
俏皮的采波完成签到 ,获得积分10
27秒前
31秒前
33秒前
普萘洛尔完成签到,获得积分10
33秒前
wenwen完成签到,获得积分10
35秒前
鲤鱼芷波完成签到,获得积分10
36秒前
36秒前
HYT发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968138
求助须知:如何正确求助?哪些是违规求助? 3513109
关于积分的说明 11166577
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629