Ensemble hologram quantitative structure activity relationship model of the chromatographic retention index of aldehydes and ketones

数量结构-活动关系 化学 分子描述符 过度拟合 生物系统 人工智能 计算机科学 人工神经网络 立体化学 生物
作者
Bin Lei,Yunlei Zang,Zhiwei Xue,Yiqing Ge,Wei Li,Qian Zhai,Long Jiao
出处
期刊:Sepu [China Science Publishing & Media Ltd.]
卷期号:39 (3): 331-337 被引量:2
标识
DOI:10.3724/sp.j.1123.2020.06011
摘要

Chromatographic retention index (RI) is an important parameter for describing the retention behavior of substances in chromatographic analysis. Experimentally determining the RI values of different aldehyde and ketone compounds in all kinds of polar stationary phases is expensive and time consuming. Quantitative structure activity relationship (QSAR) is an important chemometric technique that has been widely used to correlate the properties of chemicals to their molecular structures. Irrespective of whether the properties of a molecule have been experimentally determined, they can be calculated using QSAR models. It is therefore necessary and advisable to establish the QSAR model for predicting the RI value of aldehydes and ketones. Hologram QSAR (HQSAR) is a highly efficient QSAR approach that can easily generate QSAR models with good statistics and high prediction accuracy. A specific fragment of fingerprint, known as a molecular hologram, is proposed in the HQSAR approach and used as a structural descriptor to build the proposed QSAR model. In general, individual HQSAR models are built in QSAR researches. However, individual QSAR models are usually affected by underfitting and overfitting. The ensemble modeling method, which integrate several individual models through certain consensus strategies, can overcome the shortcomings of individual models. It is worth studying whether ensemble modeling can improve the prediction ability of the HQSAR method in order to build more accurate and reliable QSAR models.Therefore, this study investigates the QSAR model for chromatographic RI of aldehydes and ketones using ensemble modeling and the HQSAR method. Two individual HQSAR models comprising 34 compounds in two stationary phases, DB-210 and HP-Innowax, were established. The prediction ability of the two established models was assessed by external test set validation and leave-one-out cross validation (LOO-CV). The investigated 34 compounds were randomly assigned into two groups. Group Ⅰ comprised 26 compounds, and Group Ⅱ comprised 8 compounds. In the validation of the external test set, Group Ⅰ was employed to manually optimize the two fragment parameters (fragment distinction (FD) and fragment size (FS)) and build the HQSAR models. Group Ⅱ was used as the test set to assess the predictive performance of the developed models. For the DB-210 stationary phase, the optimal individual HQSAR model was obtained while setting the FD and FS to “donor/acceptor atoms (DA)” and 1-9, respectively. For the HP-Innowax stationary phase, the optimal individual HQSAR model was obtained by setting the FD and FS to “DA” and 4-7 respectively. The squared correlation coefficient of cross validation ( q cv 2 ), concordance correlation coefficient (CCC), squared correlation coefficient of external validation ( q ext 2 ), predictive squared correlation coefficient ( Q F 2 2 and Q F 3 2 ) of the two models for predicting the RI value were 0.935 and 0.909, 0.953 and 0.960, 0.925 and 0.927, 0.922 and 0.918, and 0.931 and 0.927, respectively. The results of the two validations show that there is a quantitative relationship between the molecular structure of these compounds and the RI value, and the HQSAR model is capable of modeling this relationship. Second, the ensemble HQSAR models were established using the four individual HQSAR models with the highest accuracy as the sub-models through arithmetic averaging. The ensemble HQSAR models were validated by external test set validation and LOO-CV. The q cv 2 , CCC, q ext 2 , Q F 2 2 , and Q F 3 2 for predicting the RI values of the DB-210 and HP-Innowax stationary phases were 0.927 and 0.919, 0.956 and 0.979, 0.929 and 0.963, 0.927 and 0.958, and 0.935 and 0.963, respectively. Compared to the individual HQSAR models, the established ensemble HQSAR models show better robustness and accuracy, thus establishing that ensemble modeling is an effective approach. The combination of HQSAR and the ensemble modeling method is a practicable and promising method for studying and predicting the RI values of aldehydes and ketones.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hsa_ID发布了新的文献求助10
刚刚
邱佩群完成签到 ,获得积分10
刚刚
1秒前
tleeny完成签到,获得积分10
1秒前
媛桃子完成签到,获得积分10
2秒前
2秒前
5秒前
李超凡发布了新的文献求助10
5秒前
科研通AI6应助Abc123采纳,获得10
6秒前
Doctor姜留下了新的社区评论
6秒前
7秒前
如果课题会讲话完成签到,获得积分20
7秒前
7秒前
7秒前
lyn完成签到,获得积分10
7秒前
8秒前
自然宁静完成签到,获得积分10
8秒前
chenqiumu应助尊敬的芷卉采纳,获得30
8秒前
YaoHui发布了新的文献求助10
8秒前
10秒前
西西公主完成签到,获得积分10
11秒前
11秒前
12秒前
yolanda发布了新的文献求助10
12秒前
YWang完成签到,获得积分10
12秒前
木谦发布了新的文献求助10
13秒前
idiot完成签到,获得积分10
13秒前
完美世界应助古德猫宁采纳,获得10
17秒前
17秒前
深情安青应助小黄鸭采纳,获得10
17秒前
idiot发布了新的文献求助10
17秒前
科研通AI6应助996采纳,获得10
18秒前
Ava应助丸子_2025000采纳,获得10
19秒前
小帅发布了新的文献求助10
19秒前
科目三应助Pendulium采纳,获得10
19秒前
20秒前
seall发布了新的文献求助10
20秒前
与可发布了新的文献求助10
21秒前
乔乔完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259600
求助须知:如何正确求助?哪些是违规求助? 4421190
关于积分的说明 13762060
捐赠科研通 4295031
什么是DOI,文献DOI怎么找? 2356695
邀请新用户注册赠送积分活动 1353099
关于科研通互助平台的介绍 1314206