Ensemble hologram quantitative structure activity relationship model of the chromatographic retention index of aldehydes and ketones

数量结构-活动关系 化学 分子描述符 过度拟合 生物系统 人工智能 计算机科学 人工神经网络 立体化学 生物
作者
Bin Lei,Yunlei Zang,Zhiwei Xue,Yiqing Ge,Wei Li,Qian Zhai,Long Jiao
出处
期刊:Sepu [China Science Publishing & Media Ltd.]
卷期号:39 (3): 331-337 被引量:2
标识
DOI:10.3724/sp.j.1123.2020.06011
摘要

Chromatographic retention index (RI) is an important parameter for describing the retention behavior of substances in chromatographic analysis. Experimentally determining the RI values of different aldehyde and ketone compounds in all kinds of polar stationary phases is expensive and time consuming. Quantitative structure activity relationship (QSAR) is an important chemometric technique that has been widely used to correlate the properties of chemicals to their molecular structures. Irrespective of whether the properties of a molecule have been experimentally determined, they can be calculated using QSAR models. It is therefore necessary and advisable to establish the QSAR model for predicting the RI value of aldehydes and ketones. Hologram QSAR (HQSAR) is a highly efficient QSAR approach that can easily generate QSAR models with good statistics and high prediction accuracy. A specific fragment of fingerprint, known as a molecular hologram, is proposed in the HQSAR approach and used as a structural descriptor to build the proposed QSAR model. In general, individual HQSAR models are built in QSAR researches. However, individual QSAR models are usually affected by underfitting and overfitting. The ensemble modeling method, which integrate several individual models through certain consensus strategies, can overcome the shortcomings of individual models. It is worth studying whether ensemble modeling can improve the prediction ability of the HQSAR method in order to build more accurate and reliable QSAR models.Therefore, this study investigates the QSAR model for chromatographic RI of aldehydes and ketones using ensemble modeling and the HQSAR method. Two individual HQSAR models comprising 34 compounds in two stationary phases, DB-210 and HP-Innowax, were established. The prediction ability of the two established models was assessed by external test set validation and leave-one-out cross validation (LOO-CV). The investigated 34 compounds were randomly assigned into two groups. Group Ⅰ comprised 26 compounds, and Group Ⅱ comprised 8 compounds. In the validation of the external test set, Group Ⅰ was employed to manually optimize the two fragment parameters (fragment distinction (FD) and fragment size (FS)) and build the HQSAR models. Group Ⅱ was used as the test set to assess the predictive performance of the developed models. For the DB-210 stationary phase, the optimal individual HQSAR model was obtained while setting the FD and FS to “donor/acceptor atoms (DA)” and 1-9, respectively. For the HP-Innowax stationary phase, the optimal individual HQSAR model was obtained by setting the FD and FS to “DA” and 4-7 respectively. The squared correlation coefficient of cross validation ( q cv 2 ), concordance correlation coefficient (CCC), squared correlation coefficient of external validation ( q ext 2 ), predictive squared correlation coefficient ( Q F 2 2 and Q F 3 2 ) of the two models for predicting the RI value were 0.935 and 0.909, 0.953 and 0.960, 0.925 and 0.927, 0.922 and 0.918, and 0.931 and 0.927, respectively. The results of the two validations show that there is a quantitative relationship between the molecular structure of these compounds and the RI value, and the HQSAR model is capable of modeling this relationship. Second, the ensemble HQSAR models were established using the four individual HQSAR models with the highest accuracy as the sub-models through arithmetic averaging. The ensemble HQSAR models were validated by external test set validation and LOO-CV. The q cv 2 , CCC, q ext 2 , Q F 2 2 , and Q F 3 2 for predicting the RI values of the DB-210 and HP-Innowax stationary phases were 0.927 and 0.919, 0.956 and 0.979, 0.929 and 0.963, 0.927 and 0.958, and 0.935 and 0.963, respectively. Compared to the individual HQSAR models, the established ensemble HQSAR models show better robustness and accuracy, thus establishing that ensemble modeling is an effective approach. The combination of HQSAR and the ensemble modeling method is a practicable and promising method for studying and predicting the RI values of aldehydes and ketones.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenjyuu完成签到,获得积分10
1秒前
韭黄发布了新的文献求助10
1秒前
1秒前
子车雁开完成签到,获得积分10
1秒前
2秒前
2秒前
故意的傲玉应助经法采纳,获得10
3秒前
上官若男应助经法采纳,获得10
3秒前
buno应助经法采纳,获得10
3秒前
1111应助经法采纳,获得10
3秒前
Lucas应助经法采纳,获得10
3秒前
Jasper应助经法采纳,获得10
3秒前
3秒前
习习应助经法采纳,获得10
3秒前
小鱼骑单车应助经法采纳,获得10
3秒前
辰柒发布了新的文献求助10
4秒前
英俊的铭应助经法采纳,获得10
4秒前
wgl发布了新的文献求助10
4秒前
领导范儿应助氨基酸采纳,获得30
4秒前
4秒前
科研通AI2S应助zink采纳,获得10
5秒前
科目三应助Jimmy采纳,获得10
5秒前
5秒前
5秒前
芋圆Z.发布了新的文献求助10
6秒前
6秒前
东皇太憨完成签到,获得积分10
6秒前
6秒前
7秒前
润润轩轩发布了新的文献求助10
7秒前
7秒前
orixero应助韭黄采纳,获得10
8秒前
gnufgg完成签到,获得积分10
8秒前
科研通AI5应助tabor采纳,获得10
8秒前
8秒前
互助互惠互通完成签到,获得积分10
8秒前
脑洞疼应助ziyiziyi采纳,获得10
9秒前
9秒前
9秒前
屹舟完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759