Ensemble hologram quantitative structure activity relationship model of the chromatographic retention index of aldehydes and ketones

数量结构-活动关系 化学 分子描述符 过度拟合 生物系统 人工智能 计算机科学 人工神经网络 立体化学 生物
作者
Bin Lei,Yunlei Zang,Zhiwei Xue,Yiqing Ge,Wei Li,Qian Zhai,Long Jiao
出处
期刊:Sepu [Science Press]
卷期号:39 (3): 331-337 被引量:2
标识
DOI:10.3724/sp.j.1123.2020.06011
摘要

Chromatographic retention index (RI) is an important parameter for describing the retention behavior of substances in chromatographic analysis. Experimentally determining the RI values of different aldehyde and ketone compounds in all kinds of polar stationary phases is expensive and time consuming. Quantitative structure activity relationship (QSAR) is an important chemometric technique that has been widely used to correlate the properties of chemicals to their molecular structures. Irrespective of whether the properties of a molecule have been experimentally determined, they can be calculated using QSAR models. It is therefore necessary and advisable to establish the QSAR model for predicting the RI value of aldehydes and ketones. Hologram QSAR (HQSAR) is a highly efficient QSAR approach that can easily generate QSAR models with good statistics and high prediction accuracy. A specific fragment of fingerprint, known as a molecular hologram, is proposed in the HQSAR approach and used as a structural descriptor to build the proposed QSAR model. In general, individual HQSAR models are built in QSAR researches. However, individual QSAR models are usually affected by underfitting and overfitting. The ensemble modeling method, which integrate several individual models through certain consensus strategies, can overcome the shortcomings of individual models. It is worth studying whether ensemble modeling can improve the prediction ability of the HQSAR method in order to build more accurate and reliable QSAR models.Therefore, this study investigates the QSAR model for chromatographic RI of aldehydes and ketones using ensemble modeling and the HQSAR method. Two individual HQSAR models comprising 34 compounds in two stationary phases, DB-210 and HP-Innowax, were established. The prediction ability of the two established models was assessed by external test set validation and leave-one-out cross validation (LOO-CV). The investigated 34 compounds were randomly assigned into two groups. Group Ⅰ comprised 26 compounds, and Group Ⅱ comprised 8 compounds. In the validation of the external test set, Group Ⅰ was employed to manually optimize the two fragment parameters (fragment distinction (FD) and fragment size (FS)) and build the HQSAR models. Group Ⅱ was used as the test set to assess the predictive performance of the developed models. For the DB-210 stationary phase, the optimal individual HQSAR model was obtained while setting the FD and FS to “donor/acceptor atoms (DA)” and 1-9, respectively. For the HP-Innowax stationary phase, the optimal individual HQSAR model was obtained by setting the FD and FS to “DA” and 4-7 respectively. The squared correlation coefficient of cross validation ( q cv 2 ), concordance correlation coefficient (CCC), squared correlation coefficient of external validation ( q ext 2 ), predictive squared correlation coefficient ( Q F 2 2 and Q F 3 2 ) of the two models for predicting the RI value were 0.935 and 0.909, 0.953 and 0.960, 0.925 and 0.927, 0.922 and 0.918, and 0.931 and 0.927, respectively. The results of the two validations show that there is a quantitative relationship between the molecular structure of these compounds and the RI value, and the HQSAR model is capable of modeling this relationship. Second, the ensemble HQSAR models were established using the four individual HQSAR models with the highest accuracy as the sub-models through arithmetic averaging. The ensemble HQSAR models were validated by external test set validation and LOO-CV. The q cv 2 , CCC, q ext 2 , Q F 2 2 , and Q F 3 2 for predicting the RI values of the DB-210 and HP-Innowax stationary phases were 0.927 and 0.919, 0.956 and 0.979, 0.929 and 0.963, 0.927 and 0.958, and 0.935 and 0.963, respectively. Compared to the individual HQSAR models, the established ensemble HQSAR models show better robustness and accuracy, thus establishing that ensemble modeling is an effective approach. The combination of HQSAR and the ensemble modeling method is a practicable and promising method for studying and predicting the RI values of aldehydes and ketones.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾壹完成签到,获得积分10
4秒前
雪花完成签到,获得积分10
6秒前
清风完成签到 ,获得积分10
6秒前
雪花发布了新的文献求助10
10秒前
秀丽笑容完成签到 ,获得积分10
14秒前
江湖应助聪慧芷巧采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
Rjy完成签到 ,获得积分10
22秒前
性感母蟑螂完成签到 ,获得积分10
28秒前
ruochenzu完成签到,获得积分10
30秒前
陈尹蓝完成签到 ,获得积分10
31秒前
天道酬勤完成签到,获得积分10
33秒前
35秒前
仁爱的谷南完成签到,获得积分10
35秒前
雯雯完成签到 ,获得积分10
37秒前
一路有你完成签到 ,获得积分10
37秒前
38秒前
ruochenzu发布了新的文献求助10
38秒前
40秒前
wanghao完成签到 ,获得积分10
41秒前
图图发布了新的文献求助10
41秒前
十三完成签到 ,获得积分10
41秒前
聪慧芷巧完成签到,获得积分10
42秒前
米博士完成签到,获得积分10
43秒前
研友_VZGVzn完成签到,获得积分10
44秒前
Cheung2121发布了新的文献求助30
45秒前
黄芩完成签到 ,获得积分10
46秒前
1分钟前
秋半梦完成签到,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
打地鼠工人完成签到,获得积分10
1分钟前
彩色半烟完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ning完成签到,获得积分10
1分钟前
图图完成签到,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
ludong_0完成签到,获得积分10
1分钟前
Asumita完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022