Rolling Bearing Fault Diagnosis Method Based on Multisynchrosqueezing S Transform and Faster Dictionary Learning

计算机科学 模式识别(心理学) 非负矩阵分解 人工智能 方位(导航) 局部二进制模式 分类器(UML) 超参数 语音识别 矩阵分解 图像(数学) 特征向量 直方图 量子力学 物理
作者
Guodong Sun,Ye Hu,Bo Wu,Hong-Yu Zhou
出处
期刊:Shock and Vibration [Hindawi Publishing Corporation]
卷期号:2021: 1-13
标识
DOI:10.1155/2021/8456991
摘要

Addressing the problem that it is difficult to extract the features of vibration signal and diagnose the fault of rolling bearing, we propose a novel diagnosis method combining multisynchrosqueezing S transform and faster dictionary learning (MSSST-FDL). Firstly, MSSST is adopted to transform vibration signals into high-resolution time-frequency images. Then, the local binary pattern (LBP) operator is introduced to extract the low-dimensional texture features of time-frequency images, which improves the speed of fault recognition. Finally, nonnegative matrix factorization (NMF) with only one hyperparameter and nonnegative linear equation are used to solve the dictionary learning and feature coding, respectively. The feature coding is input into the classifier for training and recognition. Experiments show that our method performs well on the rolling bearing dataset of Case Western Reserve University (CWRU) and the Society for Machinery Failure Prevention Technology (MFPT). Further, the proposed method is applied to the loudspeaker pure-tone detection dataset, and the loudspeaker anomaly diagnosis is achieved. The diagnosis results verify that our method can meet the needs of practical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaozhuzhu完成签到,获得积分10
4秒前
nihaoxjm发布了新的文献求助10
4秒前
亦玉完成签到,获得积分10
5秒前
无聊的南松完成签到,获得积分10
6秒前
7秒前
Orange应助古月采纳,获得10
8秒前
8秒前
悦耳的咖啡豆完成签到,获得积分10
11秒前
dingz完成签到,获得积分10
11秒前
领导范儿应助怡然小蚂蚁采纳,获得10
12秒前
13秒前
共享精神应助金金钟采纳,获得30
13秒前
严念桃完成签到,获得积分10
14秒前
SYLH应助Bob采纳,获得10
16秒前
昏睡的汉堡完成签到,获得积分10
16秒前
FashionBoy应助m0405采纳,获得10
16秒前
虚心的飞雪完成签到,获得积分10
17秒前
ding应助月亮不睡我不睡采纳,获得10
17秒前
17秒前
优秀笑寒完成签到,获得积分10
18秒前
CipherSage应助古月采纳,获得10
19秒前
21秒前
21秒前
梓亮发布了新的文献求助10
23秒前
Zsilu完成签到,获得积分10
23秒前
易槐完成签到,获得积分10
25秒前
26秒前
26秒前
金金钟发布了新的文献求助30
27秒前
27秒前
桐桐应助火星上的听云采纳,获得10
27秒前
28秒前
Bob完成签到,获得积分10
28秒前
李萌萌完成签到 ,获得积分10
29秒前
Tao完成签到 ,获得积分10
30秒前
别管我了应助研友_kngjrL采纳,获得10
30秒前
脑残骑士老张完成签到,获得积分10
30秒前
31秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565