Consistent Multiple Graph Embedding for Multi-View Clustering

计算机科学 聚类分析 图形 理论计算机科学 人工智能
作者
Yiming Wang,Dongxia Chang,Zhiqiang Fu,Yao Zhao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 1008-1018 被引量:50
标识
DOI:10.1109/tmm.2021.3136098
摘要

Graph-based multi-view clustering aiming to obtain a partition of data across multiple views, has received considerable attention in recent years. Although great efforts have been made for graph-based multi-view clustering, it remains a challenge to fuse characteristics from various views to learn a common representation for clustering. In this paper, we propose a novel Consistent Multiple Graph Embedding Clustering framework(CMGEC). Specifically, a multiple graph auto-encoder(M-GAE) is designed to flexibly encode the complementary information of multi-view data using a multi-graph attention fusion encoder. To guide the learned common representation maintaining the similarity of the neighboring characteristics in each view, a Multi-view Mutual Information Maximization module(MMIM) is introduced. Furthermore, a graph fusion network(GFN) is devised to explore the relationship among graphs from different views and provide a common consensus graph needed in M-GAE. By jointly training these models, the common latent representation can be obtained which encodes more complementary information from multiple views and depicts data more comprehensively. Experiments on three types of multi-view datasets demonstrate CMGEC outperforms the state-of-the-art clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的幻枫完成签到 ,获得积分10
1秒前
2秒前
HEIKU应助努力采纳,获得10
2秒前
3秒前
3秒前
熊啊完成签到,获得积分20
3秒前
yazhang完成签到 ,获得积分10
4秒前
Summer完成签到,获得积分10
5秒前
6秒前
7秒前
悲伤西米露应助ChemistryZyh采纳,获得10
7秒前
7秒前
江寻发布了新的文献求助10
7秒前
科研通AI5应助Zzzzan采纳,获得10
7秒前
Spyderman完成签到,获得积分10
7秒前
8秒前
沈呆呆发布了新的文献求助30
8秒前
Akim应助lulul采纳,获得10
10秒前
10秒前
陈文文发布了新的文献求助10
10秒前
mirror发布了新的文献求助30
11秒前
斯文败类应助浮熙采纳,获得10
11秒前
晚秋完成签到,获得积分0
12秒前
大勺完成签到 ,获得积分10
13秒前
yy完成签到,获得积分10
14秒前
14秒前
mahaha发布了新的文献求助10
15秒前
一五一十发布了新的文献求助10
15秒前
15秒前
xx完成签到,获得积分10
17秒前
沈呆呆完成签到,获得积分10
17秒前
18秒前
18秒前
Ahha完成签到 ,获得积分10
19秒前
小小狗完成签到,获得积分10
20秒前
20秒前
格格发布了新的文献求助10
20秒前
21秒前
叶思言发布了新的文献求助10
21秒前
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792