层状双氢氧化物
过电位
氢氧化物
海水
催化作用
电解
无定形固体
化学
镍
析氧
吸附
碱性水电解
无机化学
化学工程
材料科学
结晶学
电极
物理化学
冶金
地质学
电解质
有机化学
电化学
海洋学
工程类
作者
Qingqing Tu,Wenwen Liu,Jiang Meng,Wenjuan Wang,Qing Kang,Pengcheng Wang,Weijia Zhou,Feimeng Zhou
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2021-04-27
卷期号:4 (5): 4630-4637
被引量:90
标识
DOI:10.1021/acsaem.1c00262
摘要
A variety of compounds, including Ni-, Fe-, and Co-containing layered double hydroxides (LDHs), have been explored as catalysts for the oxygen evolution reaction (OER). However, few can meet the industrially mandated overpotential of 0.30 V at 500 mA/cm2 and cell voltage of 1.60 V, let alone be applied to electrolysis of seawater. We synthesized a nickel foam (NF)-supported NiFe-LDH whose OER overpotential is only 0.257 V at 500 mA/cm2 in an alkaline saline solution and requires a cell voltage of 1.54 V for the same current density when coupled with a MoNi4/MoO2/NF cathode for electrolyzing alkalized seawater. The NiFe-LDH catalyst comprises numerous nanometer-sized crystalline facets surrounded by an amorphous phase, in contrast to its highly crystalline counterpart. X-ray photoelectron spectroscopy reveals that the boundaries separating crystalline facets and amorphous phase contain more Ni3+ than other areas. Anion chromatographic analysis indicates that OH– adsorbs preferentially over Cl– onto the sites of Ni3+ of both partially and highly crystalline NiFe-LDHs, whereas Cl– adsorbs more extensively onto the crystalline planes or facets. These adsorption behaviors and the resultant different catalytic activities at high current densities can be readily rationalized by the Pearson's hard–soft acid–base principle. Because more boundaries exist in the partially crystalline NiFe-LDH, the partially crystalline NiFe-LDH catalyst is not only more catalytically efficient than its highly crystalline counterpart and other catalysts reported up to the present, but it is also stable in alkalized seawater and unaffected by Cl– adsorption.
科研通智能强力驱动
Strongly Powered by AbleSci AI