Dynamic Graph Neural Networks for Sequential Recommendation

计算机科学 图形 理论计算机科学 推荐系统 人工智能 机器学习 数据挖掘
作者
Mengqi Zhang,Shu Wu,Xueli Yu,Qiang Liu,Liang Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:124
标识
DOI:10.1109/tkde.2022.3151618
摘要

Modeling user preference from his historical sequences is one of the core problems of sequential recommendation. Existing methods in this field are widely distributed from conventional methods to deep learning methods. However, most of them only model users' interests within their own sequences and ignore the dynamic collaborative signals among different user sequences, making it insufficient to explore users' preferences. We take inspiration from dynamic graph neural networks to cope with this challenge, modeling the user sequence and dynamic collaborative signals into one framework. We propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects different user sequences through a dynamic graph structure, exploring the interactive behavior of users and items with time and order information. Furthermore, we design a Dynamic Graph Recommendation Network to extract user's preferences from the dynamic graph. Consequently, the next-item prediction task in sequential recommendation is converted into a link prediction between the user node and the item node in a dynamic graph. Extensive experiments on four public benchmarks show that DGSR outperforms several state-of-the-art methods. Further studies demonstrate the rationality and effectiveness of modeling user sequences through a dynamic graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣欣紫完成签到,获得积分10
2秒前
2秒前
bingo0913完成签到,获得积分10
3秒前
sensen完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助50
5秒前
亲爱的融完成签到,获得积分10
5秒前
7秒前
bbb发布了新的文献求助10
7秒前
8秒前
希望天下0贩的0应助sensen采纳,获得10
8秒前
典雅的苗条发布了新的文献求助100
9秒前
Dada完成签到,获得积分10
10秒前
yookia应助畅快访蕊采纳,获得10
10秒前
Akim应助yanghh采纳,获得10
11秒前
专注巨人发布了新的文献求助10
12秒前
12秒前
调皮正豪发布了新的文献求助50
13秒前
17秒前
摇一摇完成签到,获得积分10
18秒前
18秒前
keen完成签到 ,获得积分10
19秒前
DRYAN完成签到,获得积分10
21秒前
z21发布了新的文献求助100
22秒前
palexander发布了新的文献求助30
23秒前
wang完成签到 ,获得积分10
24秒前
露露完成签到 ,获得积分10
25秒前
26秒前
28秒前
28秒前
科研通AI2S应助摇一摇采纳,获得10
29秒前
sensen发布了新的文献求助10
30秒前
palexander完成签到,获得积分10
31秒前
Akim应助皮不起来的国国采纳,获得10
32秒前
科研通AI2S应助海孩子采纳,获得10
32秒前
Vivian发布了新的文献求助10
33秒前
开心的寄灵完成签到 ,获得积分10
34秒前
晚棠发布了新的文献求助10
35秒前
35秒前
37秒前
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689