Dynamic Graph Neural Networks for Sequential Recommendation

计算机科学 图形 理论计算机科学 推荐系统 人工智能 机器学习 数据挖掘
作者
Mengqi Zhang,Shu Wu,Xueli Yu,Qiang Liu,Liang Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:189
标识
DOI:10.1109/tkde.2022.3151618
摘要

Modeling user preference from his historical sequences is one of the core problems of sequential recommendation. Existing methods in this field are widely distributed from conventional methods to deep learning methods. However, most of them only model users' interests within their own sequences and ignore the dynamic collaborative signals among different user sequences, making it insufficient to explore users' preferences. We take inspiration from dynamic graph neural networks to cope with this challenge, modeling the user sequence and dynamic collaborative signals into one framework. We propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects different user sequences through a dynamic graph structure, exploring the interactive behavior of users and items with time and order information. Furthermore, we design a Dynamic Graph Recommendation Network to extract user's preferences from the dynamic graph. Consequently, the next-item prediction task in sequential recommendation is converted into a link prediction between the user node and the item node in a dynamic graph. Extensive experiments on four public benchmarks show that DGSR outperforms several state-of-the-art methods. Further studies demonstrate the rationality and effectiveness of modeling user sequences through a dynamic graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单幻天发布了新的文献求助10
5秒前
5秒前
李某完成签到 ,获得积分10
6秒前
大个应助Bb采纳,获得10
6秒前
haha完成签到 ,获得积分10
7秒前
萧东辰完成签到,获得积分10
7秒前
luqianling发布了新的文献求助10
8秒前
XXXXXX发布了新的文献求助10
9秒前
13秒前
谦让的冰海完成签到,获得积分10
14秒前
Bb完成签到,获得积分10
15秒前
迷路千琴发布了新的文献求助10
17秒前
拼搏的亦丝完成签到,获得积分10
21秒前
佳析陈完成签到,获得积分10
23秒前
27秒前
风趣问蕊发布了新的文献求助10
28秒前
Hello应助热情的笑白采纳,获得10
29秒前
勤劳坤发布了新的文献求助10
32秒前
科学家完成签到,获得积分10
32秒前
JimmyChin发布了新的文献求助10
34秒前
五木完成签到,获得积分10
36秒前
Crystal完成签到 ,获得积分10
42秒前
李爱国应助善良的广缘采纳,获得10
44秒前
斯文败类应助JimmyChin采纳,获得10
48秒前
48秒前
123完成签到,获得积分10
51秒前
仍仍完成签到,获得积分10
51秒前
星辰大海应助Diplogen采纳,获得10
52秒前
52秒前
Zx_1993应助科研通管家采纳,获得10
58秒前
情怀应助科研通管家采纳,获得10
58秒前
浮游应助科研通管家采纳,获得10
58秒前
今后应助科研通管家采纳,获得10
58秒前
乐乐应助科研通管家采纳,获得10
58秒前
科目三应助科研通管家采纳,获得10
58秒前
Owen应助科研通管家采纳,获得10
59秒前
小蘑菇应助科研通管家采纳,获得30
59秒前
浮游应助科研通管家采纳,获得10
59秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
传奇3应助科研通管家采纳,获得10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989