Rapid diagnosis of lung cancer and glioma based on serum Raman spectroscopy combined with deep learning

胶质瘤 肺癌 卷积神经网络 多层感知器 癌症 人工神经网络 医学 计算机科学 人工智能 内科学 肿瘤科 模式识别(心理学) 癌症研究
作者
Chen Chen,Wei Wu,Cheng Chen,Fangfang Chen,Xiaogang Dong,Mingrui Ma,Ziwei Yan,Xiaoyi Lv,Yuhua Ma,Min Zhu
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:52 (11): 1798-1809 被引量:35
标识
DOI:10.1002/jrs.6224
摘要

Abstract Lung cancer and glioma are common malignancies worldwide and pose a serious threat to human health. There may be a certain correlation between lung cancer patients and glioma patients in serum composition, but to date, no study on the classification and correlation of lung cancer and glioma is available. In this paper, the differences and relationships between lung cancer and glioma were analyzed from serum Raman spectra. The existing detection methods of lung cancer and glioma are time consuming and expensive, so we propose a method based on patient serum Raman spectra combined with deep learning, which can screen lung cancer and glioma accurately with speed and low cost. In this study, features were extracted from the original spectral data of patients with lung cancer, glioma, and control subjects. By adding different decibels of white Gaussian noise to the training set for data enhancement, the enhanced training set data were imported into a multilayer perceptron (MLP), recursive neural network (RNN), convolutional neural network (CNN), and AlexNet using fivefold cross‐validation to build the diagnostic model. The results show that PLS‐AlexNet is the best model. The accuracy of this model in the binary classification experiment of lung cancer and control subjects, lung cancer and glioma, and glioma and control subjects were 99%, 95.2%, and 100%, respectively, and the experimental accuracy of the AlexNet triclassification algorithm is also above 85%. This method has great potential in clinical diagnosis of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anastasia完成签到 ,获得积分10
1秒前
renpp822发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
如意闭月完成签到,获得积分10
4秒前
6秒前
6秒前
DQ发布了新的文献求助10
8秒前
笑弯了眼发布了新的文献求助10
8秒前
腾总发布了新的文献求助10
8秒前
科研通AI5应助沉静晓丝采纳,获得10
8秒前
dz发布了新的文献求助10
8秒前
456发布了新的文献求助10
9秒前
10秒前
何浏亮完成签到,获得积分10
10秒前
长青发布了新的文献求助10
10秒前
12秒前
丘比特应助zxc采纳,获得10
12秒前
CodeCraft应助dzll采纳,获得10
13秒前
婷婷发布了新的文献求助10
14秒前
Jupiter完成签到,获得积分10
14秒前
14秒前
meena完成签到,获得积分20
15秒前
科研通AI5应助明理的绿柏采纳,获得10
16秒前
17秒前
狂野的锦程完成签到,获得积分10
18秒前
momo发布了新的文献求助10
18秒前
19秒前
19秒前
RR发布了新的文献求助10
19秒前
20秒前
科研通AI5应助小夏饭桶采纳,获得10
20秒前
Duchung发布了新的文献求助10
22秒前
昕昕子发布了新的文献求助10
23秒前
24秒前
24秒前
水lunwen完成签到 ,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174