Investigating the Working Efficiency of Typical Work in High-Altitude Alpine Metal Mining Areas Based on a SeqGAN-GABP Mixed Algorithm

反向传播 计算机科学 人工神经网络 数据挖掘 高度(三角形) 高海拔对人类的影响 算法 人工智能 机器学习 数学 气象学 几何学 物理
作者
Hua Ning,He Huang,Xinhong Zhang
出处
期刊:Advances in Civil Engineering [Hindawi Limited]
卷期号:2021: 1-12 被引量:1
标识
DOI:10.1155/2021/9941415
摘要

Man-machine efficacy evaluations of typical work in the safe mining of high-altitude alpine metal mines are associated with fuzziness, multiple indexes, and large subjective components. This results in difficulties in the prediction of the typical work efficiency in high-altitude alpine metal mining areas. In this study, ergonomic theory was applied to establish the evaluation index system of typical work efficiency in high-altitude alpine metal mining areas by studying the cooperative relationship between operators, working machines, working environment, and design variables. First, we investigated the collaborative relationship between workers, operating machinery, operating environment, and design variables in order to establish the evaluation index system of typical work efficiency in high-altitude alpine metal mining areas. Second, principal component analysis (PCA) was integrated with the fusion entropy weight method to (i) analyze the coupling correlation and overlapping effects between the factors influencing efficiency at different altitudes and (ii) to determine the key influencing factors. Third, a model based on the sequence generative adversarial network genetic algorithm backpropagation (SeqGAN-GABP) hybrid algorithm was established to predict the trends in the operating efficiency of typical work types in high-altitude alpine metal mining areas. Finally, three high-altitude alpine metal mines in Xinjiang were selected as representative examples to verify the proposed framework by comparing it with other state-of the art models (multiple linear regression prediction model, backpropagation (BP) neural network model, and genetic algorithm back propagation (GA-BP) neural network model). Results determine the average relative error of each model as 2.74%, 1.97%, 1.29%, and 1.02%, respectively, indicating the greater accuracy of our proposed method in predicting the efficiency of typical work types in high-altitude alpine mining areas. This study can provide a scientific basis for the establishment of mining safety judgment standards in high-altitude alpine areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
obito完成签到,获得积分10
1秒前
娜行发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
Ck完成签到,获得积分10
3秒前
烦烦完成签到 ,获得积分10
4秒前
百宝发布了新的文献求助10
5秒前
jiangnan发布了新的文献求助10
5秒前
Sev完成签到,获得积分10
5秒前
5秒前
可耐的乘风完成签到,获得积分10
5秒前
FIN应助obito采纳,获得30
6秒前
啾啾发布了新的文献求助10
6秒前
爱学习的向日葵完成签到,获得积分10
7秒前
7秒前
华仔应助泛泛之交采纳,获得10
8秒前
雪123发布了新的文献求助10
8秒前
8秒前
9秒前
charon发布了新的文献求助10
9秒前
凶狠的食铁兽完成签到,获得积分10
9秒前
星辰大海应助花花啊采纳,获得10
9秒前
华仔应助liuyingke采纳,获得10
9秒前
HEIKU应助还不如瞎写采纳,获得10
10秒前
liuliumei发布了新的文献求助30
11秒前
zhouzhou完成签到,获得积分10
11秒前
sure发布了新的文献求助10
11秒前
上官若男应助Hu111采纳,获得10
12秒前
务实的紫伊完成签到,获得积分10
12秒前
春风得意完成签到,获得积分10
12秒前
爱你呃不可能完成签到,获得积分10
12秒前
WSY完成签到,获得积分20
12秒前
666星爷留下了新的社区评论
13秒前
风吹似夏完成签到,获得积分10
13秒前
13秒前
李健应助crr采纳,获得10
13秒前
tao完成签到,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672