QSAR and machine learning modeling of toxicity of nanomaterials: a risk assessment approach

生物信息学 生化工程 纳米技术 数量结构-活动关系 计算生物学 计算机科学 化学 生物 工程类 机器学习 材料科学 基因 生物化学
作者
Supratik Kar,Jerzy Leszczyński
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 417-441 被引量:4
标识
DOI:10.1016/b978-0-12-820505-1.00016-x
摘要

The advancement of nanoscience and enormous use of nanomaterials (NMs) in the form of coated nanoparticles, engineered metal oxide nanomaterials (MONMs), single- and multiwalled carbon nanotubes, fullerenes (C60/C70), and silica NMs open up multifaceted possibilities of inflicting toxicity on the environment. With the implications of NMs in medicine, cars, batteries, solar panels, textiles, toys, electronics, etc., one can't control the safe release of NMs into the ecosystem, which directly affects the organisms present in the aquatic and terrestrial environment and indirectly affects humans' lives. The testing of each individual form of NMs on diverse species as well as different response/endpoints by traditional experimental assays is an impossible task. Thus in most cases, environment regulatory bodies, industries, and environmental scientists largely depend on in silico methods like quantitative structure–activity relationships (QSARs) and machine learning approaches. In a relatively short time, these models can be prepared with the expertise of cheminformaticians and can be employed for the prediction of future NMs as well as the already existing ones in the ecosystem. Since the beginning of 2010, a huge number of in silico models have been developed in combination with in vivo and in vitro analysis, and the present number of such models exceeds 150. The successful models cover eukaryotic to prokaryotic organisms and cell lines including cytotoxicity, genotoxicity, enzymatic inhibition, egg hatching, cellular viability, and cellular uptake. Most of the models can identify the mechanistic interpretation behind the toxicity of NMs toward specific organisms/cell lines. This is helpful for the safe design of NMs for the future along with risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的半芹完成签到 ,获得积分10
1秒前
沉默冬卉发布了新的文献求助30
1秒前
能干的雨发布了新的文献求助10
2秒前
3秒前
3秒前
汉堡包应助abletoo采纳,获得20
3秒前
初芷伊发布了新的文献求助10
4秒前
keyantong完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
lor发布了新的文献求助10
6秒前
xue发布了新的文献求助10
7秒前
来自三百发布了新的文献求助30
7秒前
搜集达人应助书生采纳,获得10
7秒前
8秒前
8秒前
10秒前
mingming发布了新的文献求助10
10秒前
打打应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
11秒前
FIN应助科研通管家采纳,获得30
11秒前
风清扬应助科研通管家采纳,获得30
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
奥特超曼应助科研通管家采纳,获得20
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
ED应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
努力发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
大模型应助科研通管家采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712