Energy-Aware Service Function Chain Embedding in Edge–Cloud Environments for IoT Applications

计算机科学 云计算 试验台 能源消耗 边缘计算 分布式计算 高效能源利用 GSM演进的增强数据速率 资源配置 服务质量 计算机网络 电信 操作系统 工程类 电气工程
作者
Nguyen Huu Thanh,Nguyễn Trung Kiên,Ngo Van Hoa,Trương Thu Hương,Florian Wamser,Tobias Hoßfeld
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (17): 13465-13486 被引量:32
标识
DOI:10.1109/jiot.2021.3064986
摘要

The implementation of Internet-of-Things (IoT) applications faces several challenges in practice, such as compliance with Quality-of-Service requirements, resource constraints, and energy consumption. In this context, the joint edge–cloud paradigm for IoT applications can resolve some of the issues arising in pure cloud computing scenarios, such as those related to latency, energy, or privacy. Therefore, an edge–cloud environment could be promising for resource and energy-efficient IoT applications that implement virtual network functions (VNFs) bound together into service function chains (SFCs). However, a resource and energy-efficient SFC placement requires smart SFC embedding mechanisms in the edge–cloud environment, as several challenges arise, such as IoT service chain modeling and evaluation, the tradeoff between resource allocation, energy efficiency and performance, and the resource dynamics. In this article, we address issues in modeling resource and energy utilization for IoT applications in edge–cloud environments. A smart traffic monitoring IP camera system is deployed as a use case for a realistic modeling of a service chain. The system is implemented in our testbed, which is designed and developed specifically to model and investigate the resource and energy utilization of SFC embedding strategies. A resource and energy-aware SFC strategy in the edge–cloud environment for IoT applications is then proposed. Our algorithm is able to cope with dynamic load and resource situations emerging from dynamic SFC requests. The strategy is evaluated systematically in terms of the acceptance ratio of SFC requests, resource efficiency and utilization, power consumption, and VNF migrations depending on the offered system load. Results show that our strategy outperforms some existing approaches in terms of resource and energy efficiency, thus it overcomes the relevant challenges from practice and meets the demands of IoT applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敬之发布了新的文献求助10
刚刚
青青完成签到,获得积分10
刚刚
幽默的宝莹完成签到,获得积分20
1秒前
hjf发布了新的文献求助10
1秒前
plotu完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
直菱发布了新的文献求助10
2秒前
minmin959完成签到,获得积分10
3秒前
wuxifan发布了新的文献求助10
3秒前
灰鸽舞完成签到 ,获得积分10
3秒前
4秒前
欧克欧克完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
lky发布了新的文献求助10
4秒前
4秒前
4秒前
nn完成签到 ,获得积分10
5秒前
打打应助懵懂的钢笔采纳,获得10
5秒前
5秒前
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
QIQI发布了新的文献求助10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
打打应助科研通管家采纳,获得10
5秒前
大白应助科研通管家采纳,获得20
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
stiger应助科研通管家采纳,获得10
6秒前
蜀安应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
善学以致用应助机灵水卉采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894