A novel approach to attribute reduction based on weighted neighborhood rough sets

粗集 计算机科学 依赖关系(UML) 还原(数学) 数据挖掘 集合(抽象数据类型) 构造(python库) 维数(图论) 属性域 人工智能 模式识别(心理学) 数学 几何学 程序设计语言 纯数学
作者
Meng Hu,Eric W. K. Tsang,Yanting Guo,Degang Chen,Weihua Xu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:220: 106908-106908 被引量:44
标识
DOI:10.1016/j.knosys.2021.106908
摘要

Neighborhood rough sets based attribute reduction, as a common dimension reduction method, has been widely used in machine learning and data mining. Each attribute has the same weight (the degree of importance) in the existing neighborhood rough set models. In this work, we introduce different weights into neighborhood relations and propose a novel approach for attribute reduction. The main motivation is to fully mine the correlation between attributes and decisions before calculating neighborhood relations, and the attributes with high correlation are assigned higher weights. We first construct a Weighted Neighborhood Rough Set (WNRS) model based on weighted neighborhood relations and discuss its properties. Then WNRS based dependency is defined to evaluate the significance of attribute subsets. We design a greedy search algorithm based on WNRS to select an attribute subset which has both strong correlation and high dependency. Furthermore, we use isometric search to find the optimal neighborhood threshold. Finally, ten datasets from UCI machine learning repository and ELVIRA Biomedical data set repository are used to compare the performance of WNRS with those of other state-of-the-art reduction algorithms. The experimental results show that WNRS is feasible and effective, which has higher classification accuracy and compression ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jun完成签到 ,获得积分10
刚刚
刚刚
默默惜灵发布了新的文献求助10
1秒前
zhengzengpeng发布了新的文献求助10
1秒前
是木易呀应助cwq921采纳,获得10
1秒前
1秒前
2秒前
2秒前
可能可能最可能不像不像不太像完成签到,获得积分20
2秒前
弥谷发布了新的文献求助30
2秒前
2秒前
醉熏的凝莲完成签到,获得积分10
3秒前
研友_VZG7GZ应助江流有声采纳,获得10
3秒前
seven完成签到,获得积分10
3秒前
suwan完成签到,获得积分10
3秒前
Kkk发布了新的文献求助10
3秒前
李心雨发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
星寒发布了新的文献求助10
6秒前
良辰应助醉熏的凝莲采纳,获得10
7秒前
超帅雨柏完成签到 ,获得积分10
7秒前
日月发布了新的文献求助10
7秒前
精明俊驰发布了新的文献求助10
7秒前
丁老三完成签到,获得积分10
7秒前
可靠的南霜完成签到 ,获得积分10
8秒前
张帆远航完成签到,获得积分10
8秒前
方方公主发布了新的文献求助10
8秒前
asdxsweef应助tang采纳,获得150
8秒前
酷波er应助tang采纳,获得30
8秒前
9秒前
饱满绝施应助Stella采纳,获得10
9秒前
邹万恶发布了新的文献求助10
9秒前
碎碎念发布了新的文献求助10
10秒前
小草发布了新的文献求助10
10秒前
LinYX完成签到,获得积分10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307830
求助须知:如何正确求助?哪些是违规求助? 2941398
关于积分的说明 8503161
捐赠科研通 2615878
什么是DOI,文献DOI怎么找? 1429249
科研通“疑难数据库(出版商)”最低求助积分说明 663679
邀请新用户注册赠送积分活动 648650