A novel approach to attribute reduction based on weighted neighborhood rough sets

粗集 计算机科学 依赖关系(UML) 还原(数学) 数据挖掘 集合(抽象数据类型) 构造(python库) 维数(图论) 降维 人工智能 模式识别(心理学) 数学 几何学 程序设计语言 纯数学
作者
Meng Hu,Eric C.C. Tsang,Yanting Guo,Degang Chen,Weihua Xu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:220: 106908-106908 被引量:99
标识
DOI:10.1016/j.knosys.2021.106908
摘要

Neighborhood rough sets based attribute reduction, as a common dimension reduction method, has been widely used in machine learning and data mining. Each attribute has the same weight (the degree of importance) in the existing neighborhood rough set models. In this work, we introduce different weights into neighborhood relations and propose a novel approach for attribute reduction. The main motivation is to fully mine the correlation between attributes and decisions before calculating neighborhood relations, and the attributes with high correlation are assigned higher weights. We first construct a Weighted Neighborhood Rough Set (WNRS) model based on weighted neighborhood relations and discuss its properties. Then WNRS based dependency is defined to evaluate the significance of attribute subsets. We design a greedy search algorithm based on WNRS to select an attribute subset which has both strong correlation and high dependency. Furthermore, we use isometric search to find the optimal neighborhood threshold. Finally, ten datasets from UCI machine learning repository and ELVIRA Biomedical data set repository are used to compare the performance of WNRS with those of other state-of-the-art reduction algorithms. The experimental results show that WNRS is feasible and effective, which has higher classification accuracy and compression ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
herococa应助阿星捌采纳,获得10
1秒前
nong12123发布了新的文献求助20
1秒前
yitai发布了新的文献求助10
1秒前
中科路2020发布了新的文献求助30
1秒前
2秒前
FashionBoy应助沉静晓啸采纳,获得10
3秒前
自由的忆文完成签到,获得积分10
4秒前
纳斯达克发布了新的文献求助10
4秒前
5秒前
zjmsb发布了新的文献求助10
5秒前
5秒前
6秒前
非正常死亡完成签到,获得积分10
6秒前
6秒前
chihuey发布了新的文献求助10
6秒前
研友_VZG7GZ应助艳子采纳,获得10
6秒前
zg完成签到,获得积分10
8秒前
chef发布了新的文献求助10
8秒前
共享精神应助霸气凡儿采纳,获得10
9秒前
小蘑菇应助冬至季采纳,获得10
9秒前
9秒前
奋斗的念烟完成签到,获得积分10
9秒前
古月完成签到,获得积分20
10秒前
10秒前
10秒前
菠萝橙子完成签到,获得积分10
10秒前
wanci应助阿强采纳,获得10
10秒前
NexusExplorer应助shuang采纳,获得10
10秒前
岳凯完成签到 ,获得积分10
10秒前
yitai完成签到,获得积分10
11秒前
zhan完成签到 ,获得积分10
11秒前
土豆发布了新的文献求助10
11秒前
tutoutou完成签到,获得积分20
12秒前
汉堡包应助酷酷学采纳,获得10
12秒前
12秒前
旺仔女士完成签到,获得积分10
13秒前
刻苦谷兰关注了科研通微信公众号
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110