Aero-engine health degradation estimation based on an underdetermined extended Kalman filter and convergence proof

卡尔曼滤波器 趋同(经济学) 欠定系统 估计 移动视界估计 扩展卡尔曼滤波器 计算机科学 控制理论(社会学) 降级(电信) 概念证明 控制工程 数学 人工智能 算法 工程类 经济 电信 控制(管理) 经济增长 系统工程 操作系统
作者
Xiaofeng Liu,Jiaqi Zhu,Chenshuang Luo,Liuqi Xiong,Qiang Pan
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:125: 528-538 被引量:15
标识
DOI:10.1016/j.isatra.2021.06.040
摘要

In order to improve the reliability of aero-engine, reduce maintenance cost, and promote aircraft safety, lots of attention is paid to health monitoring of aero-engine. The aero-engine gas components involve flow and efficiency parameters, which are key health parameters to obtain the aero-engine' performance degradation. A challenge has to be faced is that these health parameters needed to know are more than the available sensors, which cannot be estimated by the ordinary estimator like Kalman Filter (KF) and Extended Kalman Filter (EKF). In this paper, a system approach is raised to use model tuning parameter to solve the estimation problem mentioned before. To implement it, an underdetermined EKF estimator is constructed from previous achievement and applied to an aero-engine for health state estimation, to address the problem that there are fewer sensor data available with more unknown health parameters. And convergence proof of underdetermined EKF is also provided to make sure that the experimental result is deterministic rather than occasional, deducing that the convergence of this estimator can be verified with some mild constraints. It is found in this study that the covariance matrices Qk and Rk can meet the conditions of linear matrix inequality (LMI) by designing and setting specific ranges, leading to rapid convergence of the estimator. In addition, semi-physical experiments are shown to verify the feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助Zpk采纳,获得10
1秒前
KeYang发布了新的文献求助10
1秒前
1秒前
1秒前
研友_VZG7GZ应助Rita采纳,获得10
2秒前
2秒前
Ava应助迷路的晓旋采纳,获得10
2秒前
小仙女完成签到 ,获得积分10
2秒前
2秒前
勤劳小懒虫给勤劳小懒虫的求助进行了留言
4秒前
蔡蔡完成签到,获得积分10
5秒前
33333发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
我在发布了新的文献求助10
7秒前
噔噔蹬完成签到 ,获得积分10
8秒前
辛未发布了新的文献求助10
8秒前
10秒前
田様应助黄思雯采纳,获得10
10秒前
Yyyyyy完成签到,获得积分10
11秒前
ltyuli发布了新的文献求助10
12秒前
嗯啊完成签到,获得积分10
12秒前
ML发布了新的文献求助10
14秒前
14秒前
15秒前
张洪旗完成签到,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
popvich应助科研通管家采纳,获得20
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543