Aero-engine health degradation estimation based on an underdetermined extended Kalman filter and convergence proof

卡尔曼滤波器 趋同(经济学) 欠定系统 估计 移动视界估计 扩展卡尔曼滤波器 计算机科学 控制理论(社会学) 降级(电信) 概念证明 控制工程 数学 人工智能 算法 工程类 经济 电信 控制(管理) 经济增长 系统工程 操作系统
作者
Xiaofeng Liu,Jiaqi Zhu,Chenshuang Luo,Liuqi Xiong,Qiang Pan
出处
期刊:Isa Transactions [Elsevier]
卷期号:125: 528-538 被引量:15
标识
DOI:10.1016/j.isatra.2021.06.040
摘要

In order to improve the reliability of aero-engine, reduce maintenance cost, and promote aircraft safety, lots of attention is paid to health monitoring of aero-engine. The aero-engine gas components involve flow and efficiency parameters, which are key health parameters to obtain the aero-engine' performance degradation. A challenge has to be faced is that these health parameters needed to know are more than the available sensors, which cannot be estimated by the ordinary estimator like Kalman Filter (KF) and Extended Kalman Filter (EKF). In this paper, a system approach is raised to use model tuning parameter to solve the estimation problem mentioned before. To implement it, an underdetermined EKF estimator is constructed from previous achievement and applied to an aero-engine for health state estimation, to address the problem that there are fewer sensor data available with more unknown health parameters. And convergence proof of underdetermined EKF is also provided to make sure that the experimental result is deterministic rather than occasional, deducing that the convergence of this estimator can be verified with some mild constraints. It is found in this study that the covariance matrices Qk and Rk can meet the conditions of linear matrix inequality (LMI) by designing and setting specific ranges, leading to rapid convergence of the estimator. In addition, semi-physical experiments are shown to verify the feasibility of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高嘉懿完成签到 ,获得积分20
1秒前
1秒前
香蕉觅云应助念烟采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
qq发布了新的文献求助10
3秒前
mtt完成签到,获得积分10
3秒前
kyros发布了新的文献求助10
3秒前
95完成签到,获得积分10
4秒前
bopop发布了新的文献求助30
4秒前
深情安青应助111采纳,获得10
4秒前
k_1发布了新的文献求助10
4秒前
科研通AI6应助憨憨采纳,获得10
4秒前
ljj发布了新的文献求助10
4秒前
qjq发布了新的文献求助20
6秒前
6秒前
zchliu发布了新的文献求助10
6秒前
anni完成签到,获得积分10
7秒前
6666发布了新的文献求助30
7秒前
科研通AI6应助xianxian采纳,获得10
8秒前
8秒前
Frank完成签到,获得积分0
8秒前
量子星尘发布了新的文献求助10
8秒前
所所应助Medy采纳,获得10
9秒前
10秒前
科研通AI6应助gaoyue高月采纳,获得10
11秒前
XX完成签到,获得积分10
11秒前
旷野发布了新的文献求助10
11秒前
Preseverance完成签到,获得积分10
12秒前
13秒前
Medy完成签到,获得积分10
13秒前
毛毛发布了新的文献求助10
13秒前
14秒前
2301完成签到,获得积分10
15秒前
包容咖啡发布了新的文献求助10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674