Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning.

糖组 结直肠癌 医学 结肠镜检查 腺瘤 生物标志物 肿瘤科 内科学 结直肠癌筛查 结直肠腺瘤 癌症 聚糖 生物 生物化学 糖蛋白 分子生物学
作者
Yiqing Pan,Lei Zhang,Rongrong Zhang,Jing Han,Wenjun Qin,Yong Gu,Jichen Sha,Xiaoyan Xu,Yi Feng,Zhipeng Ren,Jiawen Dai,Ben Huang,Shifang Ren,Jianxin Gu
标识
摘要

Colorectal cancer (CRC), one of the major health problems worldwide, mostly develops from colorectal adenomas. Advanced adenomas are generally considered as precancerous lesions and patients are recommended to remove the adenomas. Screening for colorectal cancer is usually performed by fecal tests (FOBT or FIT) and colonoscopy, however, their benefits are limited by uptake and adherence. Most CRC develops from colorectal advanced adenomas, but there is currently a lack of effective noninvasive screening method for advanced adenomas. N-glycans in human serum hold the great potentials as biomarker for diagnosis of human cancers. Our aim was to discover blood-based markers for screening and diagnosis of advanced adenomas and CRC, and to ascertain their efficiency in classifying healthy controls, patients with advanced adenomas and CRC by incorporating machine learning techniques with reliable and simple quantitative method with Bionic Glycome as internal standard based on the high-throughput Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). The quantitative results showed that there is a positive correlation between multi-antennary, sialylated N-glycans and CRC progress, while bi-antennary core-fucosylated N-glycans are negatively correlated with CRC progress. Machine learning is a powerful classification tool, suitable for mining big data, especially the large amount of data generated by high-throughput technologies. Using the predictive model constructed by machine learning, we obtained the classification accuracy of 75% for classification of 189 samples including CRC, advanced adenomas and healthy controls, and the accuracy of 87% for detection of the disease group that required treatment, including CRC and advanced adenomas. To our delight, the model successfully applied to the prediction of 176 samples collected a few months later, and five samples were wrongly predicted in the disease group. Overall, this diagnostic model we constructed here has valuable potential in the clinical application of detecting advanced adenomas and colorectal cancer and could compensate for the limitations of the current screening methods for detection of CRC and advanced adenomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHAI完成签到,获得积分10
刚刚
浮游应助落寞平萱采纳,获得10
1秒前
榴莲奶黄包完成签到,获得积分10
1秒前
2秒前
咖喱爆炒鱼蛋完成签到,获得积分20
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
zzz发布了新的文献求助50
3秒前
nihao发布了新的文献求助10
3秒前
沉默寻凝完成签到,获得积分10
3秒前
4秒前
豆芽完成签到,获得积分10
4秒前
meredith0571完成签到,获得积分10
4秒前
4秒前
深情安青应助黄紫红蓝采纳,获得10
4秒前
希望天下0贩的0应助一粟采纳,获得10
4秒前
露似珍珠月似弓完成签到,获得积分10
5秒前
缓慢钢笔发布了新的文献求助10
6秒前
nyq完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI2S应助NXK采纳,获得10
6秒前
6秒前
kekeke完成签到,获得积分10
6秒前
keyanzhang完成签到,获得积分10
7秒前
7秒前
8秒前
Quinna发布了新的文献求助10
8秒前
z1z1z发布了新的文献求助10
8秒前
cchi完成签到,获得积分10
8秒前
9秒前
自由沧海发布了新的文献求助10
9秒前
jing完成签到,获得积分10
9秒前
9秒前
浮游应助wangjiewen1109采纳,获得10
9秒前
群众完成签到,获得积分10
9秒前
Tomma完成签到,获得积分10
10秒前
kkm完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885652
求助须知:如何正确求助?哪些是违规求助? 4170459
关于积分的说明 12941799
捐赠科研通 3931212
什么是DOI,文献DOI怎么找? 2156914
邀请新用户注册赠送积分活动 1175326
关于科研通互助平台的介绍 1079935