Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning.

糖组 结直肠癌 医学 结肠镜检查 腺瘤 生物标志物 肿瘤科 内科学 结直肠癌筛查 结直肠腺瘤 癌症 聚糖 生物 生物化学 糖蛋白 分子生物学
作者
Yiqing Pan,Lei Zhang,Rongrong Zhang,Jing Han,Wenjun Qin,Yong Gu,Jichen Sha,Xiaoyan Xu,Yi Feng,Zhipeng Ren,Jiawen Dai,Ben Huang,Shifang Ren,Jianxin Gu
标识
摘要

Colorectal cancer (CRC), one of the major health problems worldwide, mostly develops from colorectal adenomas. Advanced adenomas are generally considered as precancerous lesions and patients are recommended to remove the adenomas. Screening for colorectal cancer is usually performed by fecal tests (FOBT or FIT) and colonoscopy, however, their benefits are limited by uptake and adherence. Most CRC develops from colorectal advanced adenomas, but there is currently a lack of effective noninvasive screening method for advanced adenomas. N-glycans in human serum hold the great potentials as biomarker for diagnosis of human cancers. Our aim was to discover blood-based markers for screening and diagnosis of advanced adenomas and CRC, and to ascertain their efficiency in classifying healthy controls, patients with advanced adenomas and CRC by incorporating machine learning techniques with reliable and simple quantitative method with Bionic Glycome as internal standard based on the high-throughput Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). The quantitative results showed that there is a positive correlation between multi-antennary, sialylated N-glycans and CRC progress, while bi-antennary core-fucosylated N-glycans are negatively correlated with CRC progress. Machine learning is a powerful classification tool, suitable for mining big data, especially the large amount of data generated by high-throughput technologies. Using the predictive model constructed by machine learning, we obtained the classification accuracy of 75% for classification of 189 samples including CRC, advanced adenomas and healthy controls, and the accuracy of 87% for detection of the disease group that required treatment, including CRC and advanced adenomas. To our delight, the model successfully applied to the prediction of 176 samples collected a few months later, and five samples were wrongly predicted in the disease group. Overall, this diagnostic model we constructed here has valuable potential in the clinical application of detecting advanced adenomas and colorectal cancer and could compensate for the limitations of the current screening methods for detection of CRC and advanced adenomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duoduo完成签到,获得积分20
2秒前
就离谱应助年轻就要气盛采纳,获得10
3秒前
咩咩羊发布了新的文献求助10
5秒前
5秒前
善学以致用应助酶没美镁采纳,获得10
6秒前
6秒前
慕青应助暖光采纳,获得10
6秒前
GC发布了新的文献求助10
7秒前
dxs完成签到 ,获得积分10
7秒前
李爱国应助断棍豪斯采纳,获得10
8秒前
满意代萱完成签到 ,获得积分10
9秒前
完美芹发布了新的文献求助10
10秒前
ShellyHan发布了新的文献求助30
10秒前
一默完成签到,获得积分10
12秒前
秀丽砖头发布了新的文献求助10
12秒前
14秒前
14秒前
morlison发布了新的文献求助10
15秒前
传奇3应助星辰采纳,获得10
15秒前
16秒前
晶晶完成签到,获得积分10
18秒前
万能图书馆应助Alec采纳,获得10
18秒前
白瓜完成签到 ,获得积分10
19秒前
陈文娜完成签到,获得积分10
20秒前
MoNesy完成签到,获得积分10
20秒前
断棍豪斯发布了新的文献求助10
22秒前
22秒前
ShellyHan完成签到,获得积分10
22秒前
Orange应助科研通管家采纳,获得10
24秒前
La-crazy应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得20
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
24秒前
烂漫明轩完成签到,获得积分10
26秒前
abjz完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
精细有机单元反应合成技术手册,张大国编著,北京:化学工业出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3078927
求助须知:如何正确求助?哪些是违规求助? 2731589
关于积分的说明 7519419
捐赠科研通 2380215
什么是DOI,文献DOI怎么找? 1262147
科研通“疑难数据库(出版商)”最低求助积分说明 611840
版权声明 597396