Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning.

糖组 结直肠癌 医学 结肠镜检查 腺瘤 生物标志物 肿瘤科 内科学 结直肠癌筛查 结直肠腺瘤 癌症 聚糖 生物 生物化学 糖蛋白 分子生物学
作者
Yiqing Pan,Lei Zhang,Rongrong Zhang,Jing Han,Wenjun Qin,Yong Gu,Jichen Sha,Xiaoyan Xu,Yi Feng,Zhipeng Ren,Jiawen Dai,Ben Huang,Shifang Ren,Jianxin Gu
标识
摘要

Colorectal cancer (CRC), one of the major health problems worldwide, mostly develops from colorectal adenomas. Advanced adenomas are generally considered as precancerous lesions and patients are recommended to remove the adenomas. Screening for colorectal cancer is usually performed by fecal tests (FOBT or FIT) and colonoscopy, however, their benefits are limited by uptake and adherence. Most CRC develops from colorectal advanced adenomas, but there is currently a lack of effective noninvasive screening method for advanced adenomas. N-glycans in human serum hold the great potentials as biomarker for diagnosis of human cancers. Our aim was to discover blood-based markers for screening and diagnosis of advanced adenomas and CRC, and to ascertain their efficiency in classifying healthy controls, patients with advanced adenomas and CRC by incorporating machine learning techniques with reliable and simple quantitative method with Bionic Glycome as internal standard based on the high-throughput Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). The quantitative results showed that there is a positive correlation between multi-antennary, sialylated N-glycans and CRC progress, while bi-antennary core-fucosylated N-glycans are negatively correlated with CRC progress. Machine learning is a powerful classification tool, suitable for mining big data, especially the large amount of data generated by high-throughput technologies. Using the predictive model constructed by machine learning, we obtained the classification accuracy of 75% for classification of 189 samples including CRC, advanced adenomas and healthy controls, and the accuracy of 87% for detection of the disease group that required treatment, including CRC and advanced adenomas. To our delight, the model successfully applied to the prediction of 176 samples collected a few months later, and five samples were wrongly predicted in the disease group. Overall, this diagnostic model we constructed here has valuable potential in the clinical application of detecting advanced adenomas and colorectal cancer and could compensate for the limitations of the current screening methods for detection of CRC and advanced adenomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助美丽采纳,获得10
1秒前
云胡完成签到,获得积分10
1秒前
gu发布了新的文献求助10
1秒前
星星泡饭完成签到,获得积分20
2秒前
宓振家发布了新的文献求助10
3秒前
4秒前
高兴的半仙完成签到,获得积分10
7秒前
宓振家完成签到,获得积分10
7秒前
8秒前
小小关注了科研通微信公众号
9秒前
10秒前
zz发布了新的文献求助10
12秒前
wanci应助大昕采纳,获得10
13秒前
开朗万天完成签到 ,获得积分10
14秒前
14秒前
scl完成签到,获得积分10
14秒前
wo完成签到 ,获得积分10
17秒前
17秒前
runner完成签到,获得积分10
17秒前
坚强的广山应助美丽采纳,获得200
18秒前
19秒前
迟大猫应助壮观的文龙采纳,获得10
20秒前
王大禹发布了新的文献求助20
20秒前
WWW7发布了新的文献求助10
20秒前
壮观雁易完成签到 ,获得积分10
21秒前
昌莆发布了新的文献求助10
22秒前
洪伟发布了新的文献求助10
22秒前
breeze完成签到,获得积分10
23秒前
yanjiusheng完成签到,获得积分10
24秒前
anyone完成签到,获得积分10
25秒前
万能图书馆应助胡豆豆采纳,获得80
26秒前
我是老大应助HL采纳,获得10
26秒前
27秒前
火神杯完成签到,获得积分10
27秒前
英姑应助水水水水采纳,获得30
28秒前
谢言一完成签到,获得积分10
29秒前
或无情完成签到 ,获得积分10
29秒前
cc发布了新的文献求助10
29秒前
能干蜜蜂发布了新的文献求助10
29秒前
英姑应助善良的导师采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557510
求助须知:如何正确求助?哪些是违规求助? 3132597
关于积分的说明 9398211
捐赠科研通 2832746
什么是DOI,文献DOI怎么找? 1556996
邀请新用户注册赠送积分活动 727051
科研通“疑难数据库(出版商)”最低求助积分说明 716184