Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning.

糖组 结直肠癌 医学 结肠镜检查 腺瘤 生物标志物 肿瘤科 内科学 结直肠癌筛查 结直肠腺瘤 癌症 聚糖 生物 生物化学 糖蛋白 分子生物学
作者
Yiqing Pan,Lei Zhang,Rongrong Zhang,Jing Han,Wenjun Qin,Yong Gu,Jichen Sha,Xiaoyan Xu,Yi Feng,Zhipeng Ren,Jiawen Dai,Ben Huang,Shifang Ren,Jianxin Gu
标识
摘要

Colorectal cancer (CRC), one of the major health problems worldwide, mostly develops from colorectal adenomas. Advanced adenomas are generally considered as precancerous lesions and patients are recommended to remove the adenomas. Screening for colorectal cancer is usually performed by fecal tests (FOBT or FIT) and colonoscopy, however, their benefits are limited by uptake and adherence. Most CRC develops from colorectal advanced adenomas, but there is currently a lack of effective noninvasive screening method for advanced adenomas. N-glycans in human serum hold the great potentials as biomarker for diagnosis of human cancers. Our aim was to discover blood-based markers for screening and diagnosis of advanced adenomas and CRC, and to ascertain their efficiency in classifying healthy controls, patients with advanced adenomas and CRC by incorporating machine learning techniques with reliable and simple quantitative method with Bionic Glycome as internal standard based on the high-throughput Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). The quantitative results showed that there is a positive correlation between multi-antennary, sialylated N-glycans and CRC progress, while bi-antennary core-fucosylated N-glycans are negatively correlated with CRC progress. Machine learning is a powerful classification tool, suitable for mining big data, especially the large amount of data generated by high-throughput technologies. Using the predictive model constructed by machine learning, we obtained the classification accuracy of 75% for classification of 189 samples including CRC, advanced adenomas and healthy controls, and the accuracy of 87% for detection of the disease group that required treatment, including CRC and advanced adenomas. To our delight, the model successfully applied to the prediction of 176 samples collected a few months later, and five samples were wrongly predicted in the disease group. Overall, this diagnostic model we constructed here has valuable potential in the clinical application of detecting advanced adenomas and colorectal cancer and could compensate for the limitations of the current screening methods for detection of CRC and advanced adenomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fcl990212完成签到,获得积分20
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
lucky发布了新的文献求助10
3秒前
4秒前
和谐小鸭子完成签到 ,获得积分10
4秒前
幽默的泥猴桃完成签到,获得积分10
4秒前
超级的三问完成签到,获得积分10
5秒前
顺心秋天完成签到,获得积分10
5秒前
LAN0528发布了新的文献求助10
6秒前
晓晓鹤发布了新的文献求助10
6秒前
Orange应助桔子采纳,获得10
6秒前
6秒前
糖果完成签到 ,获得积分10
6秒前
当归完成签到,获得积分10
7秒前
玩命的幻香完成签到 ,获得积分20
8秒前
ABC的风格完成签到,获得积分10
8秒前
SciGPT应助任炳成采纳,获得20
9秒前
淡淡夕阳完成签到,获得积分10
10秒前
悦耳的阑悦完成签到,获得积分20
10秒前
烟花应助T_KYG采纳,获得10
11秒前
11秒前
luobin完成签到,获得积分10
11秒前
老高发布了新的文献求助10
12秒前
12秒前
科研通AI6应助hp采纳,获得10
12秒前
卷卷完成签到,获得积分10
12秒前
热情豌豆完成签到,获得积分10
13秒前
列娜完成签到,获得积分10
14秒前
liu发布了新的文献求助10
14秒前
14秒前
15秒前
那只幸运的小肥羊完成签到,获得积分10
15秒前
yb完成签到,获得积分10
16秒前
TRY发布了新的文献求助10
16秒前
卷卷发布了新的文献求助10
16秒前
17秒前
17秒前
虎杖悠仁完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252