Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning.

糖组 结直肠癌 医学 结肠镜检查 腺瘤 生物标志物 肿瘤科 内科学 结直肠癌筛查 结直肠腺瘤 癌症 聚糖 生物 生物化学 糖蛋白 分子生物学
作者
Yiqing Pan,Lei Zhang,Rongrong Zhang,Jing Han,Wenjun Qin,Yong Gu,Jichen Sha,Xiaoyan Xu,Yi Feng,Zhipeng Ren,Jiawen Dai,Ben Huang,Shifang Ren,Jianxin Gu
标识
摘要

Colorectal cancer (CRC), one of the major health problems worldwide, mostly develops from colorectal adenomas. Advanced adenomas are generally considered as precancerous lesions and patients are recommended to remove the adenomas. Screening for colorectal cancer is usually performed by fecal tests (FOBT or FIT) and colonoscopy, however, their benefits are limited by uptake and adherence. Most CRC develops from colorectal advanced adenomas, but there is currently a lack of effective noninvasive screening method for advanced adenomas. N-glycans in human serum hold the great potentials as biomarker for diagnosis of human cancers. Our aim was to discover blood-based markers for screening and diagnosis of advanced adenomas and CRC, and to ascertain their efficiency in classifying healthy controls, patients with advanced adenomas and CRC by incorporating machine learning techniques with reliable and simple quantitative method with Bionic Glycome as internal standard based on the high-throughput Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). The quantitative results showed that there is a positive correlation between multi-antennary, sialylated N-glycans and CRC progress, while bi-antennary core-fucosylated N-glycans are negatively correlated with CRC progress. Machine learning is a powerful classification tool, suitable for mining big data, especially the large amount of data generated by high-throughput technologies. Using the predictive model constructed by machine learning, we obtained the classification accuracy of 75% for classification of 189 samples including CRC, advanced adenomas and healthy controls, and the accuracy of 87% for detection of the disease group that required treatment, including CRC and advanced adenomas. To our delight, the model successfully applied to the prediction of 176 samples collected a few months later, and five samples were wrongly predicted in the disease group. Overall, this diagnostic model we constructed here has valuable potential in the clinical application of detecting advanced adenomas and colorectal cancer and could compensate for the limitations of the current screening methods for detection of CRC and advanced adenomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haipronl完成签到,获得积分0
1秒前
Keping完成签到,获得积分10
1秒前
1秒前
Bnejamin完成签到,获得积分10
2秒前
十二月发布了新的文献求助10
2秒前
常尽欢完成签到,获得积分10
3秒前
苏紫梗桔完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
猪猪侠发布了新的文献求助10
4秒前
小袁发布了新的文献求助10
5秒前
Lucas应助HT采纳,获得10
5秒前
5秒前
淡然元珊发布了新的文献求助10
6秒前
FashionBoy应助寒冷兔子采纳,获得10
8秒前
陈曦发布了新的文献求助10
9秒前
Fushuai完成签到,获得积分10
9秒前
简单的冰真完成签到,获得积分10
9秒前
1789完成签到 ,获得积分20
10秒前
orixero应助魔幻的雁兰采纳,获得10
10秒前
斯文夏柳发布了新的文献求助10
10秒前
dongjy应助白衣修身采纳,获得30
10秒前
ED应助刚国忠采纳,获得10
10秒前
SYLH应助刚国忠采纳,获得10
10秒前
欧大大完成签到,获得积分10
10秒前
哈哈怪完成签到 ,获得积分10
10秒前
Infinit发布了新的文献求助10
10秒前
11秒前
tyy关注了科研通微信公众号
13秒前
ZQ关闭了ZQ文献求助
13秒前
隐形的傲易完成签到 ,获得积分10
13秒前
海中有月完成签到,获得积分10
14秒前
14秒前
长情的月光完成签到,获得积分10
14秒前
魔幻的雁兰完成签到,获得积分20
14秒前
田様应助陈曦采纳,获得10
15秒前
hihi发布了新的文献求助10
15秒前
FelixChen发布了新的文献求助20
15秒前
Spinnin完成签到,获得积分10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987