Nutritional features-based clustering analysis as a feasible approach for early identification of malnutrition in patients with cancer

营养不良 医学 列线图 观察研究 体质指数 星团(航天器) 人口 内科学 聚类分析 层次聚类 队列 环境卫生 统计 数学 计算机科学 程序设计语言
作者
Liangyu Yin,Jie Liu,Xin Lin,Na Li,Jing Guo,Fan Yang,Ling Zhang,Muli Shi,Hongmei Zhang,Xiao Chen,Chang Wang,Li Deng,Wei Li,Zhenming Fu,Chunhua Song,Zengqing Guo,Jiuwei Cui,Hanping Shi,Hongxia Xu
出处
期刊:European Journal of Clinical Nutrition [Springer Nature]
卷期号:75 (8): 1291-1301 被引量:23
标识
DOI:10.1038/s41430-020-00844-8
摘要

BackgroundMalnutrition is prevalent that can impair multiple clinical outcomes in oncology populations. This study aimed to develop and utilize a tool to optimize the early identification of malnutrition in patients with cancer.MethodsWe performed an observational cohort study including 3998 patients with cancer at two teaching hospitals in China. Hierarchical clustering was performed to classify the patients into well-nourished or malnourished clusters based on 17 features reflecting the phenotypic and etiologic dimensions of malnutrition. Associations between the identified clusters and patient characteristics were analyzed. A nomogram for predicting the malnutrition probability was constructed and independent validation was performed to explore its clinical significance.ResultsThe cluster analysis identified a well-nourished cluster (n = 2736, 68.4%) and a malnourished cluster (n = 1262, 31.6%) in the study population, which showed significant agreement with the Patient-Generated Subjective Global Assessment and the Global Leadership Initiative on Malnutrition criteria (both P < 0.001). The malnourished cluster was negatively associated with the nutritional status, physical status, quality of life, short-term outcomes and was an independent risk factor for survival (HR = 1.38, 95%CI = 1.22–1.55, P < 0.001). Sex, gastrointestinal symptoms, weight loss percentages (within and beyond 6 months), calf circumference, and body mass index were incorporated to develop the nomogram, which showed high performance to predict malnutrition (AUC = 0.972, 95%CI = 0.960–0.983). The decision curve analysis and independent external validation further demonstrated the effectiveness and clinical usefulness of the tool.ConclusionsNutritional features-based clustering analysis is a feasible approach to define malnutrition. The derived nomogram shows effectiveness for the early identification of malnutrition in patients with cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
www发布了新的文献求助10
2秒前
华仔应助Vv采纳,获得10
2秒前
似锦发布了新的文献求助20
2秒前
香蕉觅云应助唠叨的又菡采纳,获得10
4秒前
蔡以静完成签到,获得积分10
5秒前
承一发布了新的文献求助10
5秒前
科研科发布了新的文献求助30
5秒前
科研通AI6应助MC番薯采纳,获得10
6秒前
七里香发布了新的文献求助10
6秒前
Dr.Wang发布了新的文献求助10
6秒前
6秒前
miaomiao完成签到,获得积分10
7秒前
魁梧的曼易完成签到,获得积分10
7秒前
www完成签到 ,获得积分10
9秒前
lin发布了新的文献求助60
10秒前
香蕉觅云应助Dr.Wang采纳,获得10
11秒前
11秒前
14秒前
21_xxrr完成签到,获得积分10
16秒前
和谐青柏发布了新的文献求助10
16秒前
吴先生完成签到 ,获得积分10
17秒前
17秒前
hsyssb发布了新的文献求助150
18秒前
18秒前
langping完成签到,获得积分10
18秒前
18秒前
侯侯完成签到,获得积分10
19秒前
21秒前
Bminor完成签到,获得积分10
21秒前
22秒前
22秒前
吴先生关注了科研通微信公众号
22秒前
gzwhh发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
czz发布了新的文献求助10
23秒前
Kongkong发布了新的文献求助10
23秒前
25秒前
科研通AI6应助fengmian采纳,获得10
25秒前
科研科完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501