A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery

计算机科学 深度学习 人工智能 规范化(社会学) 数据挖掘 稳健性(进化) 生物化学 化学 社会学 人类学 基因
作者
Qiqi Zhu,Yanan Zhang,Lizeng Wang,Yanfei Zhong,Qingfeng Guan,Xiaoyan Lu,Liangpei Zhang,Deren Li
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:175: 353-365 被引量:152
标识
DOI:10.1016/j.isprsjprs.2021.03.016
摘要

Road extraction is to automatically label the pixels of roads in satellite imagery with specific semantic categories based on the extraction of the topographical meaningful features. For governments, timely and accurate road mapping is crucial to plan infrastructure development and mobilize relief around the world. Recent advances in deep learning have shown their dominance on road extraction from very high-resolution (VHR) satellite imagery. However, previous road extraction based on deep learning mainly stacked the multiple convolution operators and failed to predict the contextual spatial relationship correctly. Besides, the precision of cross-domain road extraction is limited by an insufficient amount of labeled data and the transferability of the model. To remedy these issues, a Global Context-aware and Batch-independent Network (GCB-Net) is proposed, which is a novel road extraction framework extract complete and continuous road networks. In GCB-Net, the Global Context-Aware (GCA) block is added to the encoder-decoder structure to effectively integrate global context features. The Filter Response Normalization (FRN) layer is used to enhance the original basic network, which eliminates the batch dependency to accelerate learning and further improve the robustness of the model. Experimental results on two diverse road extraction data sets demonstrated that the proposed method outperformed the state-of-the-art methods both quantity and quality. Moreover, to test the robust generalizability of the proposed method, the proposed CHN6-CUG Roads Dataset was used for spatial transfer evaluation, and GCB-Net achieved significantly higher transferability than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开放的大侠完成签到,获得积分10
1秒前
深情安青应助xzh采纳,获得10
2秒前
2秒前
3秒前
4秒前
4秒前
打打应助威武鸽子采纳,获得10
4秒前
打工人发布了新的文献求助10
6秒前
LWW发布了新的文献求助10
6秒前
Jasper应助婷婷采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
开心衬衫发布了新的文献求助10
9秒前
10秒前
123发布了新的文献求助20
11秒前
小奶狗发布了新的文献求助10
11秒前
DD发布了新的文献求助10
12秒前
Yvonne完成签到 ,获得积分10
12秒前
开始游戏55完成签到,获得积分10
12秒前
13秒前
mm发布了新的文献求助10
15秒前
科研呀完成签到,获得积分10
15秒前
16秒前
17秒前
Lucas应助LWW采纳,获得10
18秒前
威武鸽子发布了新的文献求助10
19秒前
小奶狗完成签到,获得积分10
19秒前
20秒前
今后应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
oceanao应助科研通管家采纳,获得10
20秒前
fifteen应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170264
求助须知:如何正确求助?哪些是违规求助? 2821489
关于积分的说明 7934302
捐赠科研通 2481692
什么是DOI,文献DOI怎么找? 1322076
科研通“疑难数据库(出版商)”最低求助积分说明 633463
版权声明 602595