A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery

计算机科学 深度学习 人工智能 规范化(社会学) 数据挖掘 稳健性(进化) 生物化学 化学 社会学 人类学 基因
作者
Qiqi Zhu,Yanan Zhang,Lizeng Wang,Yanfei Zhong,Qingfeng Guan,Xiaoyan Lu,Liangpei Zhang,Deren Li
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:175: 353-365 被引量:183
标识
DOI:10.1016/j.isprsjprs.2021.03.016
摘要

Road extraction is to automatically label the pixels of roads in satellite imagery with specific semantic categories based on the extraction of the topographical meaningful features. For governments, timely and accurate road mapping is crucial to plan infrastructure development and mobilize relief around the world. Recent advances in deep learning have shown their dominance on road extraction from very high-resolution (VHR) satellite imagery. However, previous road extraction based on deep learning mainly stacked the multiple convolution operators and failed to predict the contextual spatial relationship correctly. Besides, the precision of cross-domain road extraction is limited by an insufficient amount of labeled data and the transferability of the model. To remedy these issues, a Global Context-aware and Batch-independent Network (GCB-Net) is proposed, which is a novel road extraction framework extract complete and continuous road networks. In GCB-Net, the Global Context-Aware (GCA) block is added to the encoder-decoder structure to effectively integrate global context features. The Filter Response Normalization (FRN) layer is used to enhance the original basic network, which eliminates the batch dependency to accelerate learning and further improve the robustness of the model. Experimental results on two diverse road extraction data sets demonstrated that the proposed method outperformed the state-of-the-art methods both quantity and quality. Moreover, to test the robust generalizability of the proposed method, the proposed CHN6-CUG Roads Dataset was used for spatial transfer evaluation, and GCB-Net achieved significantly higher transferability than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助豆腐干地方采纳,获得10
刚刚
1秒前
Wangchenghan发布了新的文献求助10
1秒前
SEM小菜鸡完成签到,获得积分10
1秒前
星辰大海应助虹虹采纳,获得10
2秒前
2秒前
晴天完成签到,获得积分10
4秒前
SYLH应助小樱采纳,获得10
4秒前
4秒前
小玉应助xzDoctor采纳,获得10
4秒前
4秒前
5秒前
Pamela发布了新的文献求助10
5秒前
Profeto应助568923采纳,获得10
5秒前
科研通AI5应助568923采纳,获得10
5秒前
orixero应助568923采纳,获得10
5秒前
斯文败类应助568923采纳,获得10
5秒前
wanci应助568923采纳,获得10
5秒前
5秒前
校长完成签到,获得积分20
5秒前
踏实青槐发布了新的文献求助10
5秒前
Aurora发布了新的文献求助30
6秒前
6秒前
6秒前
领导范儿应助搞对采纳,获得10
6秒前
Tin发布了新的文献求助10
6秒前
可爱的函函应助红红采纳,获得10
6秒前
6秒前
8秒前
螺丝老人发布了新的文献求助10
8秒前
机灵飞珍完成签到 ,获得积分10
9秒前
周星星完成签到,获得积分10
9秒前
小兔子乖乖完成签到 ,获得积分10
9秒前
桐桐应助小宝采纳,获得10
9秒前
FashionBoy应助Wangchenghan采纳,获得10
9秒前
八月宁静完成签到,获得积分10
9秒前
10秒前
zhgj完成签到,获得积分10
11秒前
11秒前
ddd发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406