A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery

计算机科学 深度学习 人工智能 规范化(社会学) 数据挖掘 稳健性(进化) 生物化学 化学 社会学 人类学 基因
作者
Qiqi Zhu,Yanan Zhang,Lizeng Wang,Yanfei Zhong,Qingfeng Guan,Xiaoyan Lu,Liangpei Zhang,Deren Li
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:175: 353-365 被引量:204
标识
DOI:10.1016/j.isprsjprs.2021.03.016
摘要

Road extraction is to automatically label the pixels of roads in satellite imagery with specific semantic categories based on the extraction of the topographical meaningful features. For governments, timely and accurate road mapping is crucial to plan infrastructure development and mobilize relief around the world. Recent advances in deep learning have shown their dominance on road extraction from very high-resolution (VHR) satellite imagery. However, previous road extraction based on deep learning mainly stacked the multiple convolution operators and failed to predict the contextual spatial relationship correctly. Besides, the precision of cross-domain road extraction is limited by an insufficient amount of labeled data and the transferability of the model. To remedy these issues, a Global Context-aware and Batch-independent Network (GCB-Net) is proposed, which is a novel road extraction framework extract complete and continuous road networks. In GCB-Net, the Global Context-Aware (GCA) block is added to the encoder-decoder structure to effectively integrate global context features. The Filter Response Normalization (FRN) layer is used to enhance the original basic network, which eliminates the batch dependency to accelerate learning and further improve the robustness of the model. Experimental results on two diverse road extraction data sets demonstrated that the proposed method outperformed the state-of-the-art methods both quantity and quality. Moreover, to test the robust generalizability of the proposed method, the proposed CHN6-CUG Roads Dataset was used for spatial transfer evaluation, and GCB-Net achieved significantly higher transferability than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娃娃菜妮完成签到 ,获得积分10
刚刚
沙拉酱完成签到 ,获得积分10
刚刚
刚刚
Inversaydie完成签到,获得积分10
1秒前
追风少年完成签到,获得积分10
2秒前
123456789完成签到 ,获得积分10
5秒前
雪影完成签到 ,获得积分10
5秒前
吃不起橘子了完成签到,获得积分10
9秒前
bookgg完成签到 ,获得积分0
9秒前
SFAxzh完成签到 ,获得积分10
10秒前
Cathy完成签到,获得积分10
10秒前
莎莎完成签到 ,获得积分10
11秒前
现代的芹完成签到,获得积分10
14秒前
15秒前
15秒前
迅速千愁完成签到 ,获得积分10
17秒前
核桃发布了新的文献求助10
19秒前
20秒前
ccy_1024完成签到,获得积分10
22秒前
25秒前
慕青应助小任采纳,获得10
25秒前
ho发布了新的文献求助30
26秒前
啦啦啦啦完成签到,获得积分10
26秒前
陈雅玲完成签到 ,获得积分10
28秒前
星光发布了新的文献求助10
29秒前
小蘑菇应助ZRZ采纳,获得10
29秒前
找文献呢完成签到,获得积分10
29秒前
yun完成签到,获得积分10
31秒前
任性翠安完成签到 ,获得积分10
33秒前
无所谓完成签到,获得积分10
33秒前
学术牛马完成签到,获得积分10
33秒前
bobinson完成签到,获得积分10
33秒前
星光完成签到,获得积分10
37秒前
李欣洳完成签到,获得积分10
41秒前
汉堡包应助吴坤采纳,获得10
41秒前
隐形荟完成签到 ,获得积分10
42秒前
44秒前
Star完成签到,获得积分10
46秒前
云墨完成签到 ,获得积分10
46秒前
Zhusy完成签到 ,获得积分10
46秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378541
求助须知:如何正确求助?哪些是违规求助? 4502955
关于积分的说明 14014761
捐赠科研通 4411567
什么是DOI,文献DOI怎么找? 2423362
邀请新用户注册赠送积分活动 1416284
关于科研通互助平台的介绍 1393703