An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients Based on Volumetric and Shape Features

计算机科学 胶质瘤 脑瘤 人工智能 医学 胶质母细胞瘤 脑癌
作者
Lina Chato,Pushkin Kachroo,Shahram Latifi
出处
期刊:Lecture Notes in Computer Science 被引量:2
标识
DOI:10.1007/978-3-030-72087-2_31
摘要

An automatic overall survival time prediction system for Glioma brain tumor patients is proposed and developed based on volumetric, location, and shape features. The proposed automatic prediction system consists of three stages: segmentation of brain tumor sub-regions; features extraction; and overall survival time predictions. A deep learning structure based on a modified 3 Dimension (3D) U-Net is proposed to develop an accurate segmentation model to identify and localize the three Glioma brain tumor sub-regions: gadolinium (GD)-enhancing tumor, peritumoral edema, and necrotic and non-enhancing tumor core (NCR/NET). The best performance of a segmentation model is achieved by the modified 3D U-Net based on an Accumulated Encoder (U-Net AE) with a Generalized Dice-Loss (GDL) function trained by the ADAM optimization algorithm. This model achieves Average Dice-Similarity (ADS) scores of 0.8898, 0.8819, and 0.8524 for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET), respectively, in the train dataset of the Multimodal Brain Tumor Segmentation challenge (BraTS) 2020. Various combinations of volumetric (based on brain functionality regions), shape, and location features are extracted to train an overall survival time classification model using a Neural Network (NN). The model classifies the data into three classes: short-survivors, mid-survivors, and long-survivors. An information fusion strategy based on features-level fusion and decision-level fusion is used to produce the best prediction model. The best performance is achieved by the ensemble model and shape features model with accuracies of (55.2%) on the BraTS 2020 validation dataset. The ensemble model achieves a competitive accuracy (55.1%) on the BraTS 2020 test dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqm完成签到,获得积分10
1秒前
戏言121发布了新的文献求助10
2秒前
2秒前
3秒前
优雅的流沙完成签到 ,获得积分10
4秒前
猫的海完成签到,获得积分10
4秒前
4秒前
Eason Liu完成签到,获得积分0
5秒前
Wendy1204完成签到,获得积分20
5秒前
Hello应助654采纳,获得10
5秒前
咩咩羊完成签到,获得积分10
5秒前
9秒前
lianqing完成签到,获得积分10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
hh应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得30
10秒前
10秒前
Leif应助科研通管家采纳,获得20
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
忘羡222发布了新的文献求助20
13秒前
丰富猕猴桃完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
JamesPei应助咿咿呀呀采纳,获得10
14秒前
www完成签到,获得积分10
14秒前
科研通AI2S应助Jenny采纳,获得10
15秒前
limin完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824