亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients Based on Volumetric and Shape Features

计算机科学 胶质瘤 脑瘤 人工智能 医学 胶质母细胞瘤 脑癌
作者
Lina Chato,Pushkin Kachroo,Shahram Latifi
出处
期刊:Lecture Notes in Computer Science 被引量:2
标识
DOI:10.1007/978-3-030-72087-2_31
摘要

An automatic overall survival time prediction system for Glioma brain tumor patients is proposed and developed based on volumetric, location, and shape features. The proposed automatic prediction system consists of three stages: segmentation of brain tumor sub-regions; features extraction; and overall survival time predictions. A deep learning structure based on a modified 3 Dimension (3D) U-Net is proposed to develop an accurate segmentation model to identify and localize the three Glioma brain tumor sub-regions: gadolinium (GD)-enhancing tumor, peritumoral edema, and necrotic and non-enhancing tumor core (NCR/NET). The best performance of a segmentation model is achieved by the modified 3D U-Net based on an Accumulated Encoder (U-Net AE) with a Generalized Dice-Loss (GDL) function trained by the ADAM optimization algorithm. This model achieves Average Dice-Similarity (ADS) scores of 0.8898, 0.8819, and 0.8524 for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET), respectively, in the train dataset of the Multimodal Brain Tumor Segmentation challenge (BraTS) 2020. Various combinations of volumetric (based on brain functionality regions), shape, and location features are extracted to train an overall survival time classification model using a Neural Network (NN). The model classifies the data into three classes: short-survivors, mid-survivors, and long-survivors. An information fusion strategy based on features-level fusion and decision-level fusion is used to produce the best prediction model. The best performance is achieved by the ensemble model and shape features model with accuracies of (55.2%) on the BraTS 2020 validation dataset. The ensemble model achieves a competitive accuracy (55.1%) on the BraTS 2020 test dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪仔5号发布了新的文献求助10
37秒前
手术刀完成签到 ,获得积分10
49秒前
automan完成签到,获得积分10
57秒前
kuoping完成签到,获得积分0
58秒前
猪仔5号发布了新的文献求助10
59秒前
lixuebin完成签到 ,获得积分10
1分钟前
1分钟前
xiazeyan完成签到,获得积分10
1分钟前
嘻嘻哈哈应助AliEmbark采纳,获得10
2分钟前
猪仔5号发布了新的文献求助10
2分钟前
AliEmbark完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
sjyu1985完成签到 ,获得积分10
4分钟前
hua完成签到,获得积分10
4分钟前
hua发布了新的文献求助10
4分钟前
5分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
猪仔5号发布了新的文献求助10
6分钟前
乐正怡完成签到 ,获得积分0
6分钟前
酷波er应助忐忑的黄豆采纳,获得10
7分钟前
小石头完成签到 ,获得积分10
7分钟前
Yuki完成签到 ,获得积分10
7分钟前
吴静完成签到 ,获得积分10
7分钟前
Percy完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
猪仔5号发布了新的文献求助10
9分钟前
9分钟前
俊逸的若魔完成签到 ,获得积分10
9分钟前
U87完成签到,获得积分10
9分钟前
10分钟前
小蘑菇应助郡邑采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302944
求助须知:如何正确求助?哪些是违规求助? 4449985
关于积分的说明 13848855
捐赠科研通 4336308
什么是DOI,文献DOI怎么找? 2380906
邀请新用户注册赠送积分活动 1375846
关于科研通互助平台的介绍 1342239