已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients Based on Volumetric and Shape Features

计算机科学 胶质瘤 脑瘤 人工智能 医学 胶质母细胞瘤 脑癌
作者
Lina Chato,Pushkin Kachroo,Shahram Latifi
出处
期刊:Lecture Notes in Computer Science 被引量:2
标识
DOI:10.1007/978-3-030-72087-2_31
摘要

An automatic overall survival time prediction system for Glioma brain tumor patients is proposed and developed based on volumetric, location, and shape features. The proposed automatic prediction system consists of three stages: segmentation of brain tumor sub-regions; features extraction; and overall survival time predictions. A deep learning structure based on a modified 3 Dimension (3D) U-Net is proposed to develop an accurate segmentation model to identify and localize the three Glioma brain tumor sub-regions: gadolinium (GD)-enhancing tumor, peritumoral edema, and necrotic and non-enhancing tumor core (NCR/NET). The best performance of a segmentation model is achieved by the modified 3D U-Net based on an Accumulated Encoder (U-Net AE) with a Generalized Dice-Loss (GDL) function trained by the ADAM optimization algorithm. This model achieves Average Dice-Similarity (ADS) scores of 0.8898, 0.8819, and 0.8524 for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET), respectively, in the train dataset of the Multimodal Brain Tumor Segmentation challenge (BraTS) 2020. Various combinations of volumetric (based on brain functionality regions), shape, and location features are extracted to train an overall survival time classification model using a Neural Network (NN). The model classifies the data into three classes: short-survivors, mid-survivors, and long-survivors. An information fusion strategy based on features-level fusion and decision-level fusion is used to produce the best prediction model. The best performance is achieved by the ensemble model and shape features model with accuracies of (55.2%) on the BraTS 2020 validation dataset. The ensemble model achieves a competitive accuracy (55.1%) on the BraTS 2020 test dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangHR完成签到 ,获得积分20
1秒前
1秒前
Ico发布了新的文献求助10
1秒前
cyw关注了科研通微信公众号
2秒前
2秒前
4秒前
糊涂完成签到 ,获得积分10
5秒前
6秒前
IV完成签到,获得积分10
6秒前
duang发布了新的文献求助10
7秒前
7秒前
受伤白猫发布了新的文献求助10
7秒前
隐形曼青应助清风采纳,获得10
8秒前
浮游应助AIR采纳,获得10
8秒前
8秒前
超人强发布了新的文献求助10
8秒前
糊涂关注了科研通微信公众号
9秒前
9秒前
李李发布了新的文献求助10
9秒前
华仔应助朝与暮采纳,获得10
11秒前
三三椋椋发布了新的文献求助10
11秒前
酷酷幻梦发布了新的文献求助10
12秒前
totoro发布了新的文献求助10
12秒前
12秒前
白板完成签到,获得积分10
13秒前
酷bile完成签到,获得积分10
13秒前
Lina完成签到,获得积分10
14秒前
上官若男应助chloe采纳,获得10
14秒前
cyw发布了新的文献求助10
14秒前
木火完成签到,获得积分10
14秒前
15秒前
羊羊发布了新的文献求助10
15秒前
可可完成签到 ,获得积分10
16秒前
16秒前
pyc完成签到,获得积分10
17秒前
17秒前
传奇3应助xiong采纳,获得10
17秒前
香蕉觅云应助duang采纳,获得10
18秒前
英姑应助yolo采纳,获得10
18秒前
燕子发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919