An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients Based on Volumetric and Shape Features

计算机科学 胶质瘤 脑瘤 人工智能 医学 胶质母细胞瘤 脑癌
作者
Lina Chato,Pushkin Kachroo,Shahram Latifi
出处
期刊:Lecture Notes in Computer Science 被引量:2
标识
DOI:10.1007/978-3-030-72087-2_31
摘要

An automatic overall survival time prediction system for Glioma brain tumor patients is proposed and developed based on volumetric, location, and shape features. The proposed automatic prediction system consists of three stages: segmentation of brain tumor sub-regions; features extraction; and overall survival time predictions. A deep learning structure based on a modified 3 Dimension (3D) U-Net is proposed to develop an accurate segmentation model to identify and localize the three Glioma brain tumor sub-regions: gadolinium (GD)-enhancing tumor, peritumoral edema, and necrotic and non-enhancing tumor core (NCR/NET). The best performance of a segmentation model is achieved by the modified 3D U-Net based on an Accumulated Encoder (U-Net AE) with a Generalized Dice-Loss (GDL) function trained by the ADAM optimization algorithm. This model achieves Average Dice-Similarity (ADS) scores of 0.8898, 0.8819, and 0.8524 for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET), respectively, in the train dataset of the Multimodal Brain Tumor Segmentation challenge (BraTS) 2020. Various combinations of volumetric (based on brain functionality regions), shape, and location features are extracted to train an overall survival time classification model using a Neural Network (NN). The model classifies the data into three classes: short-survivors, mid-survivors, and long-survivors. An information fusion strategy based on features-level fusion and decision-level fusion is used to produce the best prediction model. The best performance is achieved by the ensemble model and shape features model with accuracies of (55.2%) on the BraTS 2020 validation dataset. The ensemble model achieves a competitive accuracy (55.1%) on the BraTS 2020 test dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助roro熊采纳,获得10
1秒前
1秒前
华仔应助幸福台灯采纳,获得10
2秒前
CodeCraft应助Azhe采纳,获得10
2秒前
米酒完成签到 ,获得积分10
2秒前
英姑应助细腻含羞草采纳,获得10
4秒前
michael发布了新的文献求助10
5秒前
丘比特应助younghippo采纳,获得10
8秒前
10秒前
乐乐完成签到,获得积分10
11秒前
12秒前
hf完成签到,获得积分20
12秒前
13秒前
13秒前
13秒前
可爱多完成签到,获得积分10
14秒前
qianlu完成签到 ,获得积分10
15秒前
roro熊发布了新的文献求助10
17秒前
17秒前
幸福台灯发布了新的文献求助10
17秒前
17秒前
章建清完成签到 ,获得积分10
17秒前
Azhe发布了新的文献求助10
18秒前
想发paper的金鱼完成签到,获得积分10
18秒前
周em12_发布了新的文献求助10
19秒前
东邪西毒加任我行完成签到,获得积分10
20秒前
20秒前
20秒前
搜集达人应助细腻含羞草采纳,获得10
22秒前
歪歪关注了科研通微信公众号
23秒前
23秒前
23秒前
无花果应助幸福台灯采纳,获得10
25秒前
灵兰QAQ完成签到,获得积分10
25秒前
戏谑发布了新的文献求助10
25秒前
LW90完成签到,获得积分10
25秒前
Akim应助roro熊采纳,获得10
25秒前
范范发布了新的文献求助30
26秒前
Zp发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281