An Automatic Overall Survival Time Prediction System for Glioma Brain Tumor Patients Based on Volumetric and Shape Features

计算机科学 胶质瘤 脑瘤 人工智能 医学 胶质母细胞瘤 脑癌
作者
Lina Chato,Pushkin Kachroo,Shahram Latifi
出处
期刊:Lecture Notes in Computer Science 被引量:2
标识
DOI:10.1007/978-3-030-72087-2_31
摘要

An automatic overall survival time prediction system for Glioma brain tumor patients is proposed and developed based on volumetric, location, and shape features. The proposed automatic prediction system consists of three stages: segmentation of brain tumor sub-regions; features extraction; and overall survival time predictions. A deep learning structure based on a modified 3 Dimension (3D) U-Net is proposed to develop an accurate segmentation model to identify and localize the three Glioma brain tumor sub-regions: gadolinium (GD)-enhancing tumor, peritumoral edema, and necrotic and non-enhancing tumor core (NCR/NET). The best performance of a segmentation model is achieved by the modified 3D U-Net based on an Accumulated Encoder (U-Net AE) with a Generalized Dice-Loss (GDL) function trained by the ADAM optimization algorithm. This model achieves Average Dice-Similarity (ADS) scores of 0.8898, 0.8819, and 0.8524 for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET), respectively, in the train dataset of the Multimodal Brain Tumor Segmentation challenge (BraTS) 2020. Various combinations of volumetric (based on brain functionality regions), shape, and location features are extracted to train an overall survival time classification model using a Neural Network (NN). The model classifies the data into three classes: short-survivors, mid-survivors, and long-survivors. An information fusion strategy based on features-level fusion and decision-level fusion is used to produce the best prediction model. The best performance is achieved by the ensemble model and shape features model with accuracies of (55.2%) on the BraTS 2020 validation dataset. The ensemble model achieves a competitive accuracy (55.1%) on the BraTS 2020 test dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似风完成签到,获得积分10
刚刚
刚刚
英姑应助Ki采纳,获得30
刚刚
123完成签到 ,获得积分10
1秒前
1秒前
1秒前
zzz完成签到,获得积分10
1秒前
小鱼小鱼完成签到,获得积分10
1秒前
2秒前
波波发布了新的文献求助10
2秒前
2秒前
复杂易形完成签到,获得积分10
3秒前
3秒前
3秒前
灵巧的朝雪完成签到,获得积分10
4秒前
格子发布了新的文献求助10
4秒前
4秒前
5秒前
唐小糖发布了新的文献求助10
5秒前
欧欧欧导发布了新的文献求助10
5秒前
5秒前
5秒前
wwtt完成签到 ,获得积分10
6秒前
11关注了科研通微信公众号
6秒前
星辰发布了新的文献求助10
6秒前
江睿曦发布了新的文献求助10
7秒前
自觉大门完成签到,获得积分10
7秒前
1111111发布了新的文献求助10
8秒前
硝基发布了新的文献求助10
8秒前
llxiaomianyang完成签到,获得积分10
8秒前
SWJ发布了新的文献求助10
8秒前
甄昕完成签到,获得积分10
9秒前
雨筠发布了新的文献求助10
9秒前
9秒前
科研通AI6应助顺利的源智采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
聪明萤发布了新的文献求助10
9秒前
思源应助徐徐科研一百分采纳,获得10
10秒前
淡淡土豆应助Wendy采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510526
求助须知:如何正确求助?哪些是违规求助? 4605168
关于积分的说明 14493221
捐赠科研通 4540370
什么是DOI,文献DOI怎么找? 2487953
邀请新用户注册赠送积分活动 1470219
关于科研通互助平台的介绍 1442645