Marine Vision-Based Situational Awareness Using Discriminative Deep Learning: A Survey

形势意识 计算机科学 国土安全部 数据科学 人工智能 计算机安全 人机交互 工程类 历史 航空航天工程 考古 恐怖主义
作者
Dalei Qiao,Guangzhong Liu,Taizhi Lv,Wei Li,Juan Zhang
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:9 (4): 397-397 被引量:29
标识
DOI:10.3390/jmse9040397
摘要

The primary task of marine surveillance is to construct a perfect marine situational awareness (MSA) system that serves to safeguard national maritime rights and interests and to maintain blue homeland security. Progress in maritime wireless communication, developments in artificial intelligence, and automation of marine turbines together imply that intelligent shipping is inevitable in future global shipping. Computer vision-based situational awareness provides visual semantic information to human beings that approximates eyesight, which makes it likely to be widely used in the field of intelligent marine transportation. We describe how we combined the visual perception tasks required for marine surveillance with those required for intelligent ship navigation to form a marine computer vision-based situational awareness complex and investigated the key technologies they have in common. Deep learning was a prerequisite activity. We summarize the progress made in four aspects of current research: full scene parsing of an image, target vessel re-identification, target vessel tracking, and multimodal data fusion with data from visual sensors. The paper gives a summary of research to date to provide background for this work and presents brief analyses of existing problems, outlines some state-of-the-art approaches, reviews available mainstream datasets, and indicates the likely direction of future research and development. As far as we know, this paper is the first review of research into the use of deep learning in situational awareness of the ocean surface. It provides a firm foundation for further investigation by researchers in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡皮巴拉完成签到,获得积分10
1秒前
钮傲白完成签到,获得积分10
2秒前
nerchywi完成签到,获得积分20
3秒前
ywsss完成签到,获得积分10
5秒前
英俊的铭应助独特星月采纳,获得10
5秒前
5秒前
Freya完成签到,获得积分10
7秒前
机智的凡梦完成签到,获得积分10
8秒前
10秒前
留胡子的霖完成签到,获得积分10
10秒前
li发布了新的文献求助10
10秒前
漂亮送终完成签到,获得积分10
10秒前
单纯的勒完成签到 ,获得积分10
11秒前
12秒前
15秒前
shapvalue发布了新的文献求助10
15秒前
15秒前
谦让的萤完成签到 ,获得积分10
16秒前
Wilddeer完成签到 ,获得积分10
16秒前
16秒前
柔弱跳跳糖完成签到,获得积分10
17秒前
你好呀嘻嘻完成签到 ,获得积分10
18秒前
丁丁丁应助Bi8bo采纳,获得10
18秒前
英姑应助li采纳,获得10
19秒前
19秒前
自由莺发布了新的文献求助10
21秒前
寒冷萤完成签到 ,获得积分10
21秒前
善学以致用应助依居采纳,获得10
27秒前
nerchywi发布了新的文献求助10
27秒前
活力的镜子完成签到,获得积分10
30秒前
香蕉觅云应助自由莺采纳,获得10
31秒前
yy发布了新的文献求助10
31秒前
31秒前
lanskie完成签到,获得积分10
33秒前
33秒前
33秒前
34秒前
我有魔鬼大头完成签到,获得积分10
35秒前
36秒前
乐乐应助minic采纳,获得10
36秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082546
求助须知:如何正确求助?哪些是违规求助? 2735785
关于积分的说明 7538956
捐赠科研通 2385412
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612817
版权声明 597672