Niche-based cooperative co-evolutionary ensemble neural network for classification

计算机科学 人工神经网络 水准点(测量) 进化算法 人工智能 渡线 一般化 集成学习 集合(抽象数据类型) 机器学习 数学 大地测量学 数学分析 程序设计语言 地理
作者
Jing Liang,Guanlin Chen,Boyang Qu,Caitong Yue,Kunjie Yu,Kangjia Qiao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:113: 107951-107951 被引量:4
标识
DOI:10.1016/j.asoc.2021.107951
摘要

Recently, artificial neural networks have been widely used for classification. It is important to optimize the weight parameters and topological structure of the neural network simultaneously. These two tasks are interdependent and should be solved at the same time to achieve a better result. However, existing works cannot balance the accuracy and diversity of neural networks very well. In this paper, a cooperative co-evolutionary algorithm is proposed to simultaneously evolve artificial neural network topology, neuron attributes, and connection weights. In the proposed algorithm, two effective strategies are proposed. First, the niche-based strategy is used in the evolutionary and cooperative process to refine the local search ability. In this way, a set of candidate networks with a higher level of output diversity is obtained. Second, a two-step comparison scheme is designed to acquire a compact ensemble network. Moreover, a fully connected weights matrix crossover scheme is used to avoid destroying the network structure. The proposed algorithm is tested on the benchmark classification problems in the UCI machine learning repository and compared with other state-of-the-art methods. The experimental results show that the proposed niche-based cooperative co-evolutionary ensemble neural network has a higher capability of generalization compared with other methods in six of nine kinds of classification problems. Furthermore, the proposed ensemble neural network has relatively low complexity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
研友_8y2G0L完成签到,获得积分10
1秒前
sumugeng完成签到,获得积分10
1秒前
1秒前
gaoyunfeng完成签到,获得积分10
1秒前
番fan发布了新的文献求助10
2秒前
坤123完成签到,获得积分10
2秒前
yi111发布了新的文献求助10
2秒前
3秒前
科研快乐小狗完成签到 ,获得积分10
3秒前
yangyang2021发布了新的文献求助10
3秒前
丰知然应助你眼带笑采纳,获得10
4秒前
4秒前
科研通AI6应助hainuo401采纳,获得10
4秒前
4秒前
林中雀发布了新的文献求助10
4秒前
4秒前
陈琛发布了新的文献求助10
5秒前
QI发布了新的文献求助10
5秒前
摩天轮完成签到 ,获得积分10
5秒前
5秒前
wmmmmm完成签到 ,获得积分10
5秒前
水木完成签到,获得积分10
5秒前
嘤嘤嘤发布了新的文献求助200
5秒前
科研通AI6应助wzt采纳,获得10
6秒前
科研通AI6应助wzt采纳,获得10
6秒前
科研通AI6应助wzt采纳,获得10
6秒前
不是一个名字完成签到,获得积分10
6秒前
兴奋仙人掌完成签到 ,获得积分10
6秒前
开朗的大叔完成签到,获得积分10
7秒前
7秒前
天天快乐应助大胆诗云采纳,获得10
7秒前
yao么关注了科研通微信公众号
7秒前
Zz发布了新的文献求助10
8秒前
月儿发布了新的文献求助10
8秒前
虚心的阿松完成签到,获得积分10
8秒前
Wuyt应助xzn1123采纳,获得10
8秒前
哈哈哈哈完成签到,获得积分20
9秒前
mawenxing完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524349
求助须知:如何正确求助?哪些是违规求助? 4614939
关于积分的说明 14545569
捐赠科研通 4552859
什么是DOI,文献DOI怎么找? 2495047
邀请新用户注册赠送积分活动 1475675
关于科研通互助平台的介绍 1447419