Niche-based cooperative co-evolutionary ensemble neural network for classification

计算机科学 人工神经网络 水准点(测量) 进化算法 人工智能 渡线 一般化 集成学习 集合(抽象数据类型) 机器学习 数学 大地测量学 数学分析 程序设计语言 地理
作者
Jing Liang,Guanlin Chen,Boyang Qu,Caitong Yue,Kunjie Yu,Kangjia Qiao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:113: 107951-107951 被引量:4
标识
DOI:10.1016/j.asoc.2021.107951
摘要

Recently, artificial neural networks have been widely used for classification. It is important to optimize the weight parameters and topological structure of the neural network simultaneously. These two tasks are interdependent and should be solved at the same time to achieve a better result. However, existing works cannot balance the accuracy and diversity of neural networks very well. In this paper, a cooperative co-evolutionary algorithm is proposed to simultaneously evolve artificial neural network topology, neuron attributes, and connection weights. In the proposed algorithm, two effective strategies are proposed. First, the niche-based strategy is used in the evolutionary and cooperative process to refine the local search ability. In this way, a set of candidate networks with a higher level of output diversity is obtained. Second, a two-step comparison scheme is designed to acquire a compact ensemble network. Moreover, a fully connected weights matrix crossover scheme is used to avoid destroying the network structure. The proposed algorithm is tested on the benchmark classification problems in the UCI machine learning repository and compared with other state-of-the-art methods. The experimental results show that the proposed niche-based cooperative co-evolutionary ensemble neural network has a higher capability of generalization compared with other methods in six of nine kinds of classification problems. Furthermore, the proposed ensemble neural network has relatively low complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满的小萱完成签到,获得积分20
1秒前
在水一方应助大青蛙采纳,获得10
3秒前
上官若男应助牛马小羊采纳,获得10
3秒前
3秒前
机智的小懒虫完成签到 ,获得积分10
4秒前
INITIAL应助gliterr采纳,获得10
5秒前
5秒前
zzzmq关注了科研通微信公众号
5秒前
ardejiang发布了新的文献求助10
5秒前
wenlin完成签到,获得积分10
6秒前
6秒前
华仔应助毕葛采纳,获得20
6秒前
pathway发布了新的文献求助30
7秒前
吃皮发布了新的文献求助10
8秒前
9秒前
ding应助1234采纳,获得10
10秒前
Giggle发布了新的文献求助10
11秒前
11秒前
12秒前
Agreenhand发布了新的文献求助10
12秒前
12秒前
DZQ发布了新的文献求助30
12秒前
星辰大海应助Abdurrahman采纳,获得10
14秒前
14秒前
Zhy发布了新的文献求助10
15秒前
16秒前
AllenZ发布了新的文献求助10
17秒前
zzzmq发布了新的文献求助10
17秒前
18秒前
ardejiang发布了新的文献求助10
18秒前
共享精神应助谦让的莆采纳,获得10
19秒前
19秒前
20秒前
21秒前
科研通AI2S应助hhh采纳,获得10
22秒前
Suaia发布了新的文献求助10
22秒前
111发布了新的文献求助20
22秒前
英俊的铭应助丙烯酸树脂采纳,获得10
23秒前
23秒前
鲜于夜白完成签到 ,获得积分10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248