Niche-based cooperative co-evolutionary ensemble neural network for classification

计算机科学 人工神经网络 水准点(测量) 进化算法 人工智能 渡线 一般化 集成学习 集合(抽象数据类型) 机器学习 数学 大地测量学 数学分析 程序设计语言 地理
作者
Jing Liang,Guanlin Chen,Boyang Qu,Caitong Yue,Kunjie Yu,Kangjia Qiao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:113: 107951-107951 被引量:4
标识
DOI:10.1016/j.asoc.2021.107951
摘要

Recently, artificial neural networks have been widely used for classification. It is important to optimize the weight parameters and topological structure of the neural network simultaneously. These two tasks are interdependent and should be solved at the same time to achieve a better result. However, existing works cannot balance the accuracy and diversity of neural networks very well. In this paper, a cooperative co-evolutionary algorithm is proposed to simultaneously evolve artificial neural network topology, neuron attributes, and connection weights. In the proposed algorithm, two effective strategies are proposed. First, the niche-based strategy is used in the evolutionary and cooperative process to refine the local search ability. In this way, a set of candidate networks with a higher level of output diversity is obtained. Second, a two-step comparison scheme is designed to acquire a compact ensemble network. Moreover, a fully connected weights matrix crossover scheme is used to avoid destroying the network structure. The proposed algorithm is tested on the benchmark classification problems in the UCI machine learning repository and compared with other state-of-the-art methods. The experimental results show that the proposed niche-based cooperative co-evolutionary ensemble neural network has a higher capability of generalization compared with other methods in six of nine kinds of classification problems. Furthermore, the proposed ensemble neural network has relatively low complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南瓜完成签到 ,获得积分10
1秒前
eric曾完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
韦威风完成签到,获得积分10
4秒前
请叫我风吹麦浪应助cc采纳,获得30
4秒前
所所应助Ll采纳,获得10
4秒前
阳光的道消完成签到,获得积分10
5秒前
5秒前
5秒前
豌豆射手完成签到,获得积分10
6秒前
6秒前
桑桑发布了新的文献求助10
6秒前
领导范儿应助幸福胡萝卜采纳,获得10
7秒前
明理的小甜瓜完成签到,获得积分10
8秒前
8秒前
33333完成签到,获得积分20
8秒前
8秒前
8秒前
756发布了新的文献求助10
8秒前
9秒前
科研通AI5应助GHOST采纳,获得10
9秒前
9秒前
罗实完成签到,获得积分10
10秒前
科研通AI2S应助k7采纳,获得10
10秒前
10秒前
粱自中完成签到,获得积分10
10秒前
luca发布了新的文献求助30
10秒前
10秒前
11秒前
唉呦嘿完成签到,获得积分10
11秒前
dan1029发布了新的文献求助10
12秒前
mc完成签到,获得积分10
12秒前
13秒前
zhaoyue完成签到,获得积分20
13秒前
科研通AI2S应助neil采纳,获得10
14秒前
宇宙无敌完成签到 ,获得积分10
15秒前
SY发布了新的文献求助10
15秒前
Lucas应助小田采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762