亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Niche-based cooperative co-evolutionary ensemble neural network for classification

计算机科学 人工神经网络 水准点(测量) 进化算法 人工智能 渡线 一般化 集成学习 集合(抽象数据类型) 机器学习 数学 大地测量学 数学分析 程序设计语言 地理
作者
Jing Liang,Guanlin Chen,Boyang Qu,Caitong Yue,Kunjie Yu,Kangjia Qiao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:113: 107951-107951 被引量:4
标识
DOI:10.1016/j.asoc.2021.107951
摘要

Recently, artificial neural networks have been widely used for classification. It is important to optimize the weight parameters and topological structure of the neural network simultaneously. These two tasks are interdependent and should be solved at the same time to achieve a better result. However, existing works cannot balance the accuracy and diversity of neural networks very well. In this paper, a cooperative co-evolutionary algorithm is proposed to simultaneously evolve artificial neural network topology, neuron attributes, and connection weights. In the proposed algorithm, two effective strategies are proposed. First, the niche-based strategy is used in the evolutionary and cooperative process to refine the local search ability. In this way, a set of candidate networks with a higher level of output diversity is obtained. Second, a two-step comparison scheme is designed to acquire a compact ensemble network. Moreover, a fully connected weights matrix crossover scheme is used to avoid destroying the network structure. The proposed algorithm is tested on the benchmark classification problems in the UCI machine learning repository and compared with other state-of-the-art methods. The experimental results show that the proposed niche-based cooperative co-evolutionary ensemble neural network has a higher capability of generalization compared with other methods in six of nine kinds of classification problems. Furthermore, the proposed ensemble neural network has relatively low complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心成仁完成签到 ,获得积分10
9秒前
Criminology34应助科研通管家采纳,获得20
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
lu完成签到,获得积分10
21秒前
47秒前
风月难安完成签到,获得积分10
48秒前
风月难安发布了新的文献求助10
52秒前
打打应助一事无成彭某人采纳,获得10
1分钟前
1分钟前
Sherry完成签到 ,获得积分10
1分钟前
袁青寒完成签到 ,获得积分10
1分钟前
爱航哥多久了完成签到 ,获得积分10
1分钟前
认真的幻姬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
freya发布了新的文献求助10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
chloe完成签到,获得积分10
2分钟前
怕触电的电源完成签到 ,获得积分10
2分钟前
浮游应助chloe采纳,获得10
2分钟前
严文强完成签到,获得积分10
2分钟前
SZU_Julian完成签到,获得积分10
3分钟前
3分钟前
3分钟前
米米完成签到,获得积分10
3分钟前
醉熏的荣轩完成签到 ,获得积分10
3分钟前
米米发布了新的文献求助10
3分钟前
靓丽的熠彤完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
iorpi完成签到,获得积分10
4分钟前
bkagyin应助一事无成彭某人采纳,获得10
4分钟前
4分钟前
Viiigo完成签到,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137259
求助须知:如何正确求助?哪些是违规求助? 4337127
关于积分的说明 13511092
捐赠科研通 4175660
什么是DOI,文献DOI怎么找? 2289571
邀请新用户注册赠送积分活动 1290099
关于科研通互助平台的介绍 1231727