Niche-based cooperative co-evolutionary ensemble neural network for classification

计算机科学 人工神经网络 水准点(测量) 进化算法 人工智能 渡线 一般化 集成学习 集合(抽象数据类型) 机器学习 数学 大地测量学 数学分析 程序设计语言 地理
作者
Jing Liang,Guanlin Chen,Boyang Qu,Caitong Yue,Kunjie Yu,Kangjia Qiao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:113: 107951-107951 被引量:4
标识
DOI:10.1016/j.asoc.2021.107951
摘要

Recently, artificial neural networks have been widely used for classification. It is important to optimize the weight parameters and topological structure of the neural network simultaneously. These two tasks are interdependent and should be solved at the same time to achieve a better result. However, existing works cannot balance the accuracy and diversity of neural networks very well. In this paper, a cooperative co-evolutionary algorithm is proposed to simultaneously evolve artificial neural network topology, neuron attributes, and connection weights. In the proposed algorithm, two effective strategies are proposed. First, the niche-based strategy is used in the evolutionary and cooperative process to refine the local search ability. In this way, a set of candidate networks with a higher level of output diversity is obtained. Second, a two-step comparison scheme is designed to acquire a compact ensemble network. Moreover, a fully connected weights matrix crossover scheme is used to avoid destroying the network structure. The proposed algorithm is tested on the benchmark classification problems in the UCI machine learning repository and compared with other state-of-the-art methods. The experimental results show that the proposed niche-based cooperative co-evolutionary ensemble neural network has a higher capability of generalization compared with other methods in six of nine kinds of classification problems. Furthermore, the proposed ensemble neural network has relatively low complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新手鼓手发布了新的文献求助10
1秒前
1秒前
ACE完成签到,获得积分10
1秒前
SciGPT应助亦依然采纳,获得10
3秒前
薏米人儿完成签到 ,获得积分10
3秒前
慕青应助西子阳采纳,获得10
4秒前
6秒前
大模型应助liuzengzhang666采纳,获得10
7秒前
8秒前
跳跃不凡完成签到 ,获得积分10
8秒前
落后乘风完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
比巴卜发布了新的文献求助10
10秒前
魏一刀发布了新的文献求助10
12秒前
12秒前
呵呵发布了新的文献求助10
14秒前
14秒前
领导范儿应助西子阳采纳,获得10
16秒前
17秒前
胡茶茶完成签到 ,获得积分10
18秒前
谨慎鞅完成签到,获得积分10
18秒前
Ava应助lh采纳,获得10
18秒前
19秒前
ugot完成签到,获得积分10
19秒前
Eunice完成签到,获得积分10
19秒前
上官若男应助呵呵采纳,获得10
22秒前
大方尔珍发布了新的文献求助10
22秒前
zzzqqq完成签到,获得积分10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
花花应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
25秒前
青柠大大应助科研通管家采纳,获得10
25秒前
yar应助科研通管家采纳,获得10
25秒前
yar应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070