亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Niche-based cooperative co-evolutionary ensemble neural network for classification

计算机科学 人工神经网络 水准点(测量) 进化算法 人工智能 渡线 一般化 集成学习 集合(抽象数据类型) 机器学习 数学 大地测量学 数学分析 程序设计语言 地理
作者
Jing Liang,Guanlin Chen,Boyang Qu,Caitong Yue,Kunjie Yu,Kangjia Qiao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:113: 107951-107951 被引量:4
标识
DOI:10.1016/j.asoc.2021.107951
摘要

Recently, artificial neural networks have been widely used for classification. It is important to optimize the weight parameters and topological structure of the neural network simultaneously. These two tasks are interdependent and should be solved at the same time to achieve a better result. However, existing works cannot balance the accuracy and diversity of neural networks very well. In this paper, a cooperative co-evolutionary algorithm is proposed to simultaneously evolve artificial neural network topology, neuron attributes, and connection weights. In the proposed algorithm, two effective strategies are proposed. First, the niche-based strategy is used in the evolutionary and cooperative process to refine the local search ability. In this way, a set of candidate networks with a higher level of output diversity is obtained. Second, a two-step comparison scheme is designed to acquire a compact ensemble network. Moreover, a fully connected weights matrix crossover scheme is used to avoid destroying the network structure. The proposed algorithm is tested on the benchmark classification problems in the UCI machine learning repository and compared with other state-of-the-art methods. The experimental results show that the proposed niche-based cooperative co-evolutionary ensemble neural network has a higher capability of generalization compared with other methods in six of nine kinds of classification problems. Furthermore, the proposed ensemble neural network has relatively low complexity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助小智采纳,获得10
2秒前
13秒前
14秒前
15秒前
16秒前
小智发布了新的文献求助10
18秒前
科研通AI6应助连翘采纳,获得20
19秒前
seine发布了新的文献求助10
19秒前
小马甲应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
Ava应助钱砖家采纳,获得10
39秒前
56秒前
星辰大海应助Ni采纳,获得10
56秒前
憨憨的跳跳完成签到 ,获得积分10
1分钟前
火星仙人掌完成签到 ,获得积分10
1分钟前
JamesPei应助耳东采纳,获得10
1分钟前
1分钟前
陆上飞完成签到,获得积分10
1分钟前
1分钟前
arizaki7应助青柠采纳,获得10
1分钟前
一粟完成签到 ,获得积分10
1分钟前
1分钟前
Percy完成签到 ,获得积分10
1分钟前
jamaisvu完成签到 ,获得积分10
1分钟前
康如萍发布了新的文献求助10
1分钟前
wushuimei完成签到 ,获得积分10
1分钟前
Ni发布了新的文献求助10
1分钟前
优美尔珍发布了新的文献求助40
1分钟前
小蘑菇应助Re0pen采纳,获得10
1分钟前
Jasper应助康如萍采纳,获得10
1分钟前
1分钟前
2分钟前
行走完成签到,获得积分10
2分钟前
2分钟前
钱砖家发布了新的文献求助10
2分钟前
xzlijingjing完成签到 ,获得积分10
2分钟前
2分钟前
mmyhn应助科研通管家采纳,获得20
2分钟前
2分钟前
iacir33完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528934
求助须知:如何正确求助?哪些是违规求助? 4618236
关于积分的说明 14562294
捐赠科研通 4557142
什么是DOI,文献DOI怎么找? 2497360
邀请新用户注册赠送积分活动 1477590
关于科研通互助平台的介绍 1448890