Niche-based cooperative co-evolutionary ensemble neural network for classification

计算机科学 人工神经网络 水准点(测量) 进化算法 人工智能 渡线 一般化 集成学习 集合(抽象数据类型) 机器学习 数学 大地测量学 数学分析 程序设计语言 地理
作者
Jing Liang,Guanlin Chen,Boyang Qu,Caitong Yue,Kunjie Yu,Kangjia Qiao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:113: 107951-107951 被引量:4
标识
DOI:10.1016/j.asoc.2021.107951
摘要

Recently, artificial neural networks have been widely used for classification. It is important to optimize the weight parameters and topological structure of the neural network simultaneously. These two tasks are interdependent and should be solved at the same time to achieve a better result. However, existing works cannot balance the accuracy and diversity of neural networks very well. In this paper, a cooperative co-evolutionary algorithm is proposed to simultaneously evolve artificial neural network topology, neuron attributes, and connection weights. In the proposed algorithm, two effective strategies are proposed. First, the niche-based strategy is used in the evolutionary and cooperative process to refine the local search ability. In this way, a set of candidate networks with a higher level of output diversity is obtained. Second, a two-step comparison scheme is designed to acquire a compact ensemble network. Moreover, a fully connected weights matrix crossover scheme is used to avoid destroying the network structure. The proposed algorithm is tested on the benchmark classification problems in the UCI machine learning repository and compared with other state-of-the-art methods. The experimental results show that the proposed niche-based cooperative co-evolutionary ensemble neural network has a higher capability of generalization compared with other methods in six of nine kinds of classification problems. Furthermore, the proposed ensemble neural network has relatively low complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
joshiii发布了新的文献求助10
1秒前
yyh发布了新的文献求助20
1秒前
星辞发布了新的文献求助10
2秒前
zln完成签到,获得积分10
2秒前
爆米花应助苹果大侠采纳,获得10
2秒前
2秒前
zheng发布了新的文献求助10
3秒前
YXHTCM发布了新的文献求助10
3秒前
王不留行完成签到,获得积分10
3秒前
ww发布了新的文献求助10
3秒前
3秒前
完美世界应助负责不愁采纳,获得10
4秒前
小茗发布了新的文献求助10
4秒前
SUMING发布了新的文献求助10
4秒前
12123浪发布了新的文献求助10
5秒前
ta发布了新的文献求助10
5秒前
示羊完成签到,获得积分10
6秒前
啊哈哈哈哈哈完成签到,获得积分10
6秒前
7秒前
7秒前
眉洛发布了新的文献求助10
7秒前
7秒前
木子发布了新的文献求助10
8秒前
8秒前
完美栾发布了新的文献求助10
8秒前
8秒前
liuzhanyu发布了新的文献求助10
9秒前
wAchlNiinM发布了新的文献求助10
9秒前
9秒前
鸟鸣完成签到,获得积分10
9秒前
9秒前
十三月的过客完成签到,获得积分10
9秒前
10秒前
小狗黑头发布了新的文献求助10
10秒前
lalala应助鹿阿布采纳,获得10
11秒前
CipherSage应助Nnn采纳,获得10
12秒前
Jasper应助遇见如风似浪采纳,获得10
12秒前
nn发布了新的文献求助30
12秒前
顾矜应助穆头呼橹橹采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297798
求助须知:如何正确求助?哪些是违规求助? 4446568
关于积分的说明 13839917
捐赠科研通 4331721
什么是DOI,文献DOI怎么找? 2377860
邀请新用户注册赠送积分活动 1373172
关于科研通互助平台的介绍 1338697