环境化学
沉积(地质)
氮氧化物
硝酸盐
煤燃烧产物
铵
三角洲
环境科学
氮气
活性氮
微粒
燃烧
氮同位素
水文学(农业)
化学
沉积物
地质学
工程类
航空航天工程
古生物学
有机化学
岩土工程
作者
Zhili Chen,Xin Huang,Changchun Huang,Yadong Yang,Hao Yang,Jinbo Zhang,Tao Huang
标识
DOI:10.1016/j.scitotenv.2021.150502
摘要
High ammonia (NH3) and nitrogen oxide (NOx) emissions are related to serious air pollution in urban areas and the negative impacts of excessive reactive nitrogen (N) deposition on many ecosystems. However, whether there is a relationship between N deposition rates and their sources with urbanization or not remains unclear in many areas. Here, we investigated the deposition rates of ammonium (NH4+), nitrate (NO3-), dissolved organic N, and water-insoluble particular N from July 2017 to June 2018 at two urban and two suburban sites in the Yangtze River Delta (YRD). The δ15N values of precipitation NH4+ and NO3- were measured, and major sources were analyzed using a Bayesian isotope mixing model. Wet N deposition rates were higher in Yangzhou (developing city, 20.3-22.7 kg N ha-1 yr-1) than those in Nanjing (developed city, 19.4-20.5 kg N ha-1 yr-1), and were higher at urban sites (20.4-22.5 kg N ha-1 yr-1) than those at suburban sites (18.7-20.3 kg N ha-1 yr-1). δ15N values of precipitation NH4+ increased with an increase in precipitation pH because ambient acidity affects the equilibrium isotope fractionation between NH3 and NH4+ and wet scavenging coefficients of NH3 and particulate NH4+. For NH4+, combustion-related NH3 sources (62%-65% with 5.5-6.4 kg N ha-1 yr-1, including coal combustion, vehicle exhaust, and biomass burning) contributed more than volatilization NH3 sources (35%-38% with 2.9-3.9 kg N ha-1 yr-1, including fertilizer application and waste volatilization). For NO3-, non-fossil fuel NOx sources (50%-63% with 3.4-4.1 kg N ha-1 yr-1, including biomass burning and microbial N cycle) were comparable to fossil fuel NOx sources (37%-50% with 2.4-3.4 kg N ha-1 yr-1, including coal combustion and vehicle exhaust). This study evidenced high N deposition rates and the importance of combustion-related NH3 emissions and non-fossil fuel NOx emissions in city areas of the YRD.
科研通智能强力驱动
Strongly Powered by AbleSci AI