Predicting crop root concentration factors of organic contaminants with machine learning models

污染 作物 环境化学 农业工程 化学 环境科学 农学 工程类 生态学 生物
作者
Feng Gao,Yike Shen,J. Brett Sallach,Hui Li,Wei Zhang,Yuanbo Li,Cun Liu
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:424: 127437-127437 被引量:41
标识
DOI:10.1016/j.jhazmat.2021.127437
摘要

Accurate prediction of uptake and accumulation of organic contaminants by crops from soils is essential to assessing human exposure via the food chain. However, traditional empirical or mechanistic models frequently show variable performance due to complex interactions among contaminants, soils, and plants. Thus, in this study different machine learning algorithms were compared and applied to predict root concentration factors (RCFs) based on a dataset comprising 57 chemicals and 11 crops, followed by comparison with a traditional linear regression model as the benchmark. The RCF patterns and predictions were investigated by unsupervised t-distributed stochastic neighbor embedding and four supervised machine learning models including Random Forest, Gradient Boosting Regression Tree, Fully Connected Neural Network, and Supporting Vector Regression based on 15 property descriptors. The Fully Connected Neural Network demonstrated superior prediction performance for RCFs (R2 =0.79, mean absolute error [MAE] = 0.22) over other machine learning models (R2 =0.68-0.76, MAE = 0.23-0.26). All four machine learning models performed better than the traditional linear regression model (R2 =0.62, MAE = 0.29). Four key property descriptors were identified in predicting RCFs. Specifically, increasing root lipid content and decreasing soil organic matter content increased RCFs, while increasing excess molar refractivity and molecular volume of contaminants decreased RCFs. These results show that machine learning models can improve prediction accuracy by learning nonlinear relationships between RCFs and properties of contaminants, soils, and plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nice1025完成签到,获得积分10
刚刚
刚刚
科目三应助狄振家采纳,获得10
1秒前
聪慧咖啡豆完成签到,获得积分10
1秒前
vampirell完成签到,获得积分0
2秒前
超帅雨柏完成签到 ,获得积分10
2秒前
tjunqi完成签到,获得积分10
2秒前
Ava应助幽默的文龙采纳,获得10
2秒前
坚定的草丛完成签到,获得积分10
2秒前
tianugui完成签到,获得积分10
2秒前
3秒前
孤芳自赏IrisKing完成签到 ,获得积分10
4秒前
岁岁完成签到 ,获得积分10
5秒前
慕青应助范晓阳采纳,获得10
5秒前
鲤鱼问雁完成签到,获得积分10
5秒前
jianjiao完成签到,获得积分10
5秒前
6秒前
medzhou完成签到,获得积分10
6秒前
wzxx完成签到 ,获得积分10
6秒前
7秒前
孤独含蕾完成签到,获得积分10
7秒前
zkexuan完成签到,获得积分10
7秒前
7秒前
LYing完成签到 ,获得积分10
7秒前
孤独的心锁完成签到,获得积分10
7秒前
烟花应助波粒海苔采纳,获得10
8秒前
8秒前
seven_yao完成签到,获得积分10
8秒前
renjiu完成签到,获得积分10
8秒前
Owen应助jianjiao采纳,获得10
9秒前
笨笨太阳完成签到 ,获得积分10
9秒前
kkk完成签到,获得积分10
9秒前
9秒前
10秒前
小马甲应助难过酸奶采纳,获得10
10秒前
11秒前
留胡子的丹彤完成签到 ,获得积分10
11秒前
幽默的文龙完成签到,获得积分10
11秒前
朻安完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
连铸钢板坯低倍组织缺陷评级图 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700320
求助须知:如何正确求助?哪些是违规求助? 3250729
关于积分的说明 9870623
捐赠科研通 2962621
什么是DOI,文献DOI怎么找? 1624729
邀请新用户注册赠送积分活动 769535
科研通“疑难数据库(出版商)”最低求助积分说明 742351