Mechanistic Study of the Li–Air Battery with a Co3O4 Cathode and Dimethyl Sulfoxide Electrolyte

过电位 电解质 阴极 电池(电) 锂(药物) 化学 电化学 溶剂化 化学工程 电极 物理化学 无机化学 材料科学 离子 热力学 有机化学 内分泌学 工程类 功率(物理) 物理 医学
作者
Zhen Jiang,Andrew M. Rappe
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (40): 21873-21881 被引量:10
标识
DOI:10.1021/acs.jpcc.1c07619
摘要

The lithium–air battery, a powerful competitor to replace the traditional lithium-ion battery, has attracted increasing attention due to its extremely high theoretical energy density. However, its development is limited by the cathode and electrolyte properties, which should include high stability, conductivity, and electrocatalytic properties in oxygen-rich environments. Here, we employ a systematic first-principles study of Li–O2 discharge and charge reactions on the Co3O4-based cathode with the assistance of dimethyl sulfoxide (DMSO) electrolyte. The structure, stability, and electronic properties of different surface reconstructions of the Co3O4(100) facet are investigated. In addition, the mechanisms and thermodynamic overpotentials of multi-step reactions between Li+/e– and O2 are provided, where lithium suboxide products (Li2O2 or Li3O2) are formed on the different Co3O4(100) terminations. The solvation shell of Li+ components in explicit DMSO solvent is investigated through ab initio molecular dynamics simulations. In general, we find that the Co3O4(100)-O (oxidized) surface is the most stable one under standard conditions, and the stable Li+ solvation structure is found in a tetrahedral Li(DMSO)4+ shell in the DMSO-based electrolyte. Moreover, in the system of the Co3O4(100)-O cathode and DMSO electrolyte, the solution model pathway is energetically favorable for the Li–O2 discharge reaction. It provides a low constant overpotential of 0.17 V during a long-term discharging process, thus causing the final toroid Li2O2 formation on the cathode. During the charging process, an overpotential of 0.36 V is required to rapidly decompose Li2O2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯完成签到,获得积分10
1秒前
2秒前
Jasper应助Hhhhhhu采纳,获得10
4秒前
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
修仙应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
雷马完成签到,获得积分10
6秒前
小二郎应助科研通管家采纳,获得30
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
tianzml0应助科研通管家采纳,获得10
7秒前
修仙应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
tianzml0应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
优秀的排球完成签到,获得积分10
9秒前
12秒前
12秒前
13秒前
13秒前
16秒前
加菲丰丰举报尼姑拉斯娃求助涉嫌违规
16秒前
橙子完成签到,获得积分10
16秒前
Hhhhhhu发布了新的文献求助10
17秒前
张宇琪发布了新的文献求助10
18秒前
20秒前
20秒前
婷婷应助终有时采纳,获得10
22秒前
23秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234