Semiconductive‐Ferroelectric‐Enhanced Photo‐Electrochemistry with Collective Improvements on Light Absorption, Charge Separation, and Carrier Transportation

光电流 材料科学 铁电性 兴奋剂 光电子学 极化(电化学) 载流子 带隙 电化学 可逆氢电极 吸收(声学) 纳米技术 半导体 电极 工作电极 复合材料 化学 电介质 物理化学
作者
Yuedong Gong,Yang Li,Jianguo Chen,Hui Guo,Chenwei Sun,Chun Li,Ruiguo Cao,Shuhong Jiao,Lu Huang,Weiguang Yang,Yanhao Yu
出处
期刊:Advanced Materials Interfaces [Wiley]
卷期号:8 (21) 被引量:5
标识
DOI:10.1002/admi.202101227
摘要

Abstract The efficiency of photo‐electrochemistry is jointly determined by multiple factors such as light absorption, charge separation, and carrier transportation. It is essential to maximize all of them but has proved challenging especially for photoelectrodes made from wide‐bandgap semiconductors. Here, a conceptually new strategy noted as semiconductive‐ferroelectric‐enhanced photo‐electrochemistry (SF‐PEC) is reported based on a doped TiO 2 ‐Ba x Sr 1− x TiO 3 (BST) core–shell nanowire array. Through an in situ surface conversion and an electron/nitrogen codoping process, a self‐polarized, surface‐amorphized, and doped BST thin layer is created on the surface of TiO 2 , resulting in a semiconductive‐ferroelectric‐enhanced TiO 2 (SF‐TiO 2 ) photoelectrode. Compared with pristine TiO 2 and ferroelectric‐enhanced TiO 2 (F‐TiO 2 ), the SF‐TiO 2 has stronger light absorption, greater charge separation, and faster carrier transportation, which is identified to be a synergistic outcome of the reduced bandgap, moderate ferroelectric polarization, and high carrier density and mobility. The photocurrent density of SF‐TiO 2 reaches 1.87 mA cm −2 at 1.23 V versus reversible hydrogen electrode (RHE), 1.39 and 2.46 times higher than that of F‐TiO 2 and TiO 2 , respectively. The SF‐TiO 2 maintains over 90% of its photocurrent density after being aged in air for 11 months. This work provides new insights to extend the efficiency limit of photo‐electrochemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
隐形曼青应助djwixnb采纳,获得10
4秒前
KYTZL发布了新的文献求助10
5秒前
猫的毛发布了新的文献求助20
5秒前
打打应助Merco采纳,获得10
6秒前
xxx发布了新的文献求助10
6秒前
7秒前
123完成签到,获得积分10
11秒前
一枚研究僧应助acceleactor采纳,获得100
12秒前
田様应助acceleactor采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
15秒前
jevon应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
16秒前
jevon应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
KYTZL完成签到,获得积分10
17秒前
Hh完成签到,获得积分10
18秒前
19秒前
21秒前
fcl990212发布了新的文献求助10
21秒前
香蕉觅云应助完美的海秋采纳,获得10
23秒前
AM发布了新的文献求助10
26秒前
26秒前
pluto应助kklkimo采纳,获得10
26秒前
单薄惜文应助goya采纳,获得10
27秒前
犹豫依丝发布了新的文献求助10
31秒前
ni完成签到 ,获得积分10
32秒前
顾矜应助dpp采纳,获得10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240905
求助须知:如何正确求助?哪些是违规求助? 2885619
关于积分的说明 8239527
捐赠科研通 2554095
什么是DOI,文献DOI怎么找? 1382231
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625109