Remaining Useful Life Early Prediction of Batteries Based on the Differential Voltage and Differential Capacity Curves

电压 差速器(机械装置) 电子工程 控制理论(社会学) 可靠性工程 电气工程 计算机科学 材料科学 工程类 人工智能 控制(管理) 航空航天工程
作者
Sajad Saraygord Afshari,Shihao Cui,Xiangyang Xu,Xihui Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:57
标识
DOI:10.1109/tim.2021.3117631
摘要

Accurate prediction of the remaining useful life (RUL) of batteries is of great importance for the health management of different equipment and machines, such as electric vehicles and smartphones. It gives operators information about when the battery should be replaced. Predicting the batteries' RUL using the data only from early cycles can also be beneficial for manufacturers. For example, it can reduce the batteries' testing costs during the research and development phase. This article focuses on batteries' RUL early prediction using data-driven methods. The differential capacity ( $dQ/dV)$ and differential voltage ( $dV/dQ)$ curves can reveal the potential capacity and voltage of a battery, respectively, and they are known to be indicators of the batteries' degradation. We will present a practical method for batteries' RUL early prediction using features extracted from those two curves. Accordingly, 19 features generated from the $dQ/dV$ and $dV/dQ$ curves are analyzed and extracted. The Sparse Bayesian Learning (SBL) method is a popular machine learning method in the field of RUL prediction, and it is used to achieve an RUL early prediction for batteries. In the end, the training and test errors are investigated to evaluate the presented method's efficiency. Moreover, we compared our results with two other methods (lasso and elastic net), which have been recognized as best performing methods in this field so far, and the comparisons showed our proposed method outperforms those two methods in the term of accuracy. The presented method is generic and can be used for RUL early prediction of different batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yoyo完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
牧牧完成签到,获得积分10
6秒前
共享精神应助木子杨采纳,获得10
6秒前
幽默沛山完成签到 ,获得积分10
8秒前
8秒前
8秒前
wo发布了新的文献求助10
8秒前
9秒前
机灵墨镜完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
年轻晟睿发布了新的文献求助10
10秒前
Liao发布了新的文献求助20
11秒前
zzz发布了新的文献求助10
13秒前
13秒前
13秒前
友好妙菱发布了新的文献求助10
13秒前
14秒前
白泽阳发布了新的文献求助10
14秒前
彻鱼关注了科研通微信公众号
15秒前
16秒前
16秒前
小马甲应助Holly采纳,获得10
17秒前
FashionBoy应助龙龙采纳,获得10
17秒前
寒假工发布了新的文献求助10
18秒前
18秒前
wang发布了新的文献求助10
19秒前
19秒前
19秒前
yu发布了新的文献求助10
20秒前
Tsd发布了新的文献求助10
20秒前
Elarrina发布了新的文献求助10
21秒前
www发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770594
求助须知:如何正确求助?哪些是违规求助? 5586008
关于积分的说明 15424556
捐赠科研通 4904087
什么是DOI,文献DOI怎么找? 2638509
邀请新用户注册赠送积分活动 1586384
关于科研通互助平台的介绍 1541462