Remaining Useful Life Early Prediction of Batteries Based on the Differential Voltage and Differential Capacity Curves

符号 电池(电) 算法 电池容量 差速器(机械装置) 数学 离散数学 计算机科学 工程类 算术 物理 量子力学 航空航天工程 功率(物理)
作者
Sajad Saraygord Afshari,Shihao Cui,Xiangyang Xu,Xihui Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:32
标识
DOI:10.1109/tim.2021.3117631
摘要

Accurate prediction of the remaining useful life (RUL) of batteries is of great importance for the health management of different equipment and machines, such as electric vehicles and smartphones. It gives operators information about when the battery should be replaced. Predicting the batteries’ RUL using the data only from early cycles can also be beneficial for manufacturers. For example, it can reduce the batteries’ testing costs during the research and development phase. This article focuses on batteries’ RUL early prediction using data-driven methods. The differential capacity ( $dQ/dV)$ and differential voltage ( $dV/dQ)$ curves can reveal the potential capacity and voltage of a battery, respectively, and they are known to be indicators of the batteries’ degradation. We will present a practical method for batteries’ RUL early prediction using features extracted from those two curves. Accordingly, 19 features generated from the $dQ/dV$ and $dV/dQ$ curves are analyzed and extracted. The Sparse Bayesian Learning (SBL) method is a popular machine learning method in the field of RUL prediction, and it is used to achieve an RUL early prediction for batteries. In the end, the training and test errors are investigated to evaluate the presented method’s efficiency. Moreover, we compared our results with two other methods (lasso and elastic net), which have been recognized as best performing methods in this field so far, and the comparisons showed our proposed method outperforms those two methods in the term of accuracy. The presented method is generic and can be used for RUL early prediction of different batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖阳发布了新的文献求助20
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
欣慰从云完成签到,获得积分20
2秒前
Yozzi完成签到,获得积分10
3秒前
热心市民蚂蚱殿下完成签到,获得积分10
4秒前
。。完成签到,获得积分20
5秒前
香蕉觅云应助坤坤采纳,获得10
5秒前
炙热的爆米花完成签到,获得积分20
5秒前
Ma完成签到 ,获得积分10
6秒前
6秒前
狄远山完成签到 ,获得积分10
6秒前
章鱼丸子完成签到,获得积分10
6秒前
哭泣的鸵鸟完成签到,获得积分10
6秒前
reny发布了新的文献求助10
7秒前
烂漫春天发布了新的文献求助10
7秒前
7秒前
489完成签到 ,获得积分10
7秒前
柯柯啦啦完成签到,获得积分10
8秒前
scy关注了科研通微信公众号
8秒前
8秒前
皮肤专硕小白一枚完成签到,获得积分10
8秒前
高贵的子默完成签到,获得积分10
8秒前
9秒前
9秒前
搜集达人应助silin采纳,获得10
10秒前
yingrui完成签到,获得积分10
10秒前
烟花应助周飞采纳,获得10
10秒前
小树完成签到,获得积分10
11秒前
完美世界应助神奇的呃采纳,获得10
11秒前
Chen发布了新的文献求助20
11秒前
11秒前
11秒前
answer完成签到,获得积分10
11秒前
11秒前
12秒前
细心枫叶发布了新的文献求助10
13秒前
13秒前
59完成签到,获得积分10
13秒前
酷炫迎波发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588123
求助须知:如何正确求助?哪些是违规求助? 4003732
关于积分的说明 12394936
捐赠科研通 3680328
什么是DOI,文献DOI怎么找? 2028598
邀请新用户注册赠送积分活动 1062082
科研通“疑难数据库(出版商)”最低求助积分说明 948086