亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remaining Useful Life Early Prediction of Batteries Based on the Differential Voltage and Differential Capacity Curves

电压 差速器(机械装置) 电子工程 控制理论(社会学) 可靠性工程 电气工程 计算机科学 材料科学 工程类 人工智能 控制(管理) 航空航天工程
作者
Sajad Saraygord Afshari,Shihao Cui,Xiangyang Xu,Xihui Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:45
标识
DOI:10.1109/tim.2021.3117631
摘要

Accurate prediction of the remaining useful life (RUL) of batteries is of great importance for the health management of different equipment and machines, such as electric vehicles and smartphones. It gives operators information about when the battery should be replaced. Predicting the batteries' RUL using the data only from early cycles can also be beneficial for manufacturers. For example, it can reduce the batteries' testing costs during the research and development phase. This article focuses on batteries' RUL early prediction using data-driven methods. The differential capacity ( $dQ/dV)$ and differential voltage ( $dV/dQ)$ curves can reveal the potential capacity and voltage of a battery, respectively, and they are known to be indicators of the batteries' degradation. We will present a practical method for batteries' RUL early prediction using features extracted from those two curves. Accordingly, 19 features generated from the $dQ/dV$ and $dV/dQ$ curves are analyzed and extracted. The Sparse Bayesian Learning (SBL) method is a popular machine learning method in the field of RUL prediction, and it is used to achieve an RUL early prediction for batteries. In the end, the training and test errors are investigated to evaluate the presented method's efficiency. Moreover, we compared our results with two other methods (lasso and elastic net), which have been recognized as best performing methods in this field so far, and the comparisons showed our proposed method outperforms those two methods in the term of accuracy. The presented method is generic and can be used for RUL early prediction of different batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuSHhan完成签到,获得积分10
23秒前
麻辣小龙虾完成签到,获得积分10
26秒前
Ava应助许亦采纳,获得10
32秒前
过时的笙完成签到,获得积分10
38秒前
爆米花应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
49秒前
英姑应助是你的雨采纳,获得10
52秒前
鱼鱼鱼完成签到,获得积分10
53秒前
53秒前
55秒前
酷酷海豚完成签到,获得积分10
56秒前
许亦发布了新的文献求助10
1分钟前
CC发布了新的文献求助10
1分钟前
浮游应助许亦采纳,获得10
1分钟前
1分钟前
榕小蜂完成签到 ,获得积分10
1分钟前
咸烧白胀多了完成签到,获得积分10
1分钟前
wanci应助CC采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ava应助洁净的诗珊采纳,获得10
1分钟前
2分钟前
慧慧34完成签到 ,获得积分10
2分钟前
HD发布了新的文献求助10
2分钟前
2分钟前
捉迷藏完成签到,获得积分0
2分钟前
田様应助fmx采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
所所应助drw993采纳,获得10
3分钟前
3分钟前
一只小喵完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
oscar完成签到,获得积分10
3分钟前
打打应助fmx采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127088
求助须知:如何正确求助?哪些是违规求助? 4330255
关于积分的说明 13493143
捐赠科研通 4165747
什么是DOI,文献DOI怎么找? 2283554
邀请新用户注册赠送积分活动 1284573
关于科研通互助平台的介绍 1224457