Remaining Useful Life Early Prediction of Batteries Based on the Differential Voltage and Differential Capacity Curves

符号 电池(电) 算法 电池容量 差速器(机械装置) 数学 离散数学 计算机科学 工程类 算术 物理 量子力学 航空航天工程 功率(物理)
作者
Sajad Saraygord Afshari,Shihao Cui,Xiangyang Xu,Xihui Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:32
标识
DOI:10.1109/tim.2021.3117631
摘要

Accurate prediction of the remaining useful life (RUL) of batteries is of great importance for the health management of different equipment and machines, such as electric vehicles and smartphones. It gives operators information about when the battery should be replaced. Predicting the batteries’ RUL using the data only from early cycles can also be beneficial for manufacturers. For example, it can reduce the batteries’ testing costs during the research and development phase. This article focuses on batteries’ RUL early prediction using data-driven methods. The differential capacity ( $dQ/dV)$ and differential voltage ( $dV/dQ)$ curves can reveal the potential capacity and voltage of a battery, respectively, and they are known to be indicators of the batteries’ degradation. We will present a practical method for batteries’ RUL early prediction using features extracted from those two curves. Accordingly, 19 features generated from the $dQ/dV$ and $dV/dQ$ curves are analyzed and extracted. The Sparse Bayesian Learning (SBL) method is a popular machine learning method in the field of RUL prediction, and it is used to achieve an RUL early prediction for batteries. In the end, the training and test errors are investigated to evaluate the presented method’s efficiency. Moreover, we compared our results with two other methods (lasso and elastic net), which have been recognized as best performing methods in this field so far, and the comparisons showed our proposed method outperforms those two methods in the term of accuracy. The presented method is generic and can be used for RUL early prediction of different batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九月发布了新的文献求助60
刚刚
赘婿应助菜菜Cc采纳,获得10
1秒前
anna完成签到,获得积分10
1秒前
1秒前
gavin完成签到 ,获得积分10
1秒前
闪耀星星发布了新的文献求助10
4秒前
ARXC发布了新的文献求助10
6秒前
芽芽豆完成签到 ,获得积分10
8秒前
微笑诗蕊发布了新的文献求助30
8秒前
天天快乐应助樊川采纳,获得10
9秒前
10秒前
anna发布了新的文献求助10
10秒前
GHOMON完成签到,获得积分10
11秒前
充电宝应助1111采纳,获得10
12秒前
13秒前
爱因斯坦完成签到,获得积分10
14秒前
菜菜Cc发布了新的文献求助10
14秒前
samar完成签到,获得积分20
14秒前
16秒前
16秒前
丘比特应助Cyril采纳,获得10
17秒前
YYY发布了新的文献求助10
18秒前
韩soso完成签到,获得积分10
19秒前
杜彦君完成签到 ,获得积分10
20秒前
小马想毕业完成签到,获得积分10
21秒前
21秒前
mmyhn发布了新的文献求助10
21秒前
24秒前
卓矢完成签到 ,获得积分10
25秒前
25秒前
ZYYYY发布了新的文献求助10
27秒前
28秒前
画龙点睛完成签到 ,获得积分10
28秒前
1111发布了新的文献求助10
28秒前
菇小小完成签到 ,获得积分10
29秒前
如意曼雁完成签到,获得积分10
29秒前
小巧的诗双完成签到,获得积分10
29秒前
MY完成签到,获得积分10
29秒前
30秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143731
求助须知:如何正确求助?哪些是违规求助? 2795219
关于积分的说明 7813671
捐赠科研通 2451210
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400