Remaining Useful Life Early Prediction of Batteries Based on the Differential Voltage and Differential Capacity Curves

符号 电池(电) 算法 电池容量 差速器(机械装置) 数学 离散数学 计算机科学 工程类 算术 物理 量子力学 航空航天工程 功率(物理)
作者
Sajad Saraygord Afshari,Shihao Cui,Xiangyang Xu,Xihui Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:32
标识
DOI:10.1109/tim.2021.3117631
摘要

Accurate prediction of the remaining useful life (RUL) of batteries is of great importance for the health management of different equipment and machines, such as electric vehicles and smartphones. It gives operators information about when the battery should be replaced. Predicting the batteries’ RUL using the data only from early cycles can also be beneficial for manufacturers. For example, it can reduce the batteries’ testing costs during the research and development phase. This article focuses on batteries’ RUL early prediction using data-driven methods. The differential capacity ( $dQ/dV)$ and differential voltage ( $dV/dQ)$ curves can reveal the potential capacity and voltage of a battery, respectively, and they are known to be indicators of the batteries’ degradation. We will present a practical method for batteries’ RUL early prediction using features extracted from those two curves. Accordingly, 19 features generated from the $dQ/dV$ and $dV/dQ$ curves are analyzed and extracted. The Sparse Bayesian Learning (SBL) method is a popular machine learning method in the field of RUL prediction, and it is used to achieve an RUL early prediction for batteries. In the end, the training and test errors are investigated to evaluate the presented method’s efficiency. Moreover, we compared our results with two other methods (lasso and elastic net), which have been recognized as best performing methods in this field so far, and the comparisons showed our proposed method outperforms those two methods in the term of accuracy. The presented method is generic and can be used for RUL early prediction of different batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ijn发布了新的文献求助10
刚刚
淡定的灵雁完成签到,获得积分10
刚刚
Macy-Zhao完成签到,获得积分10
刚刚
Jasper应助清爽的尔白采纳,获得10
1秒前
Silverbrg发布了新的文献求助10
1秒前
金水完成签到,获得积分10
1秒前
1秒前
2秒前
HuMinghui发布了新的文献求助10
2秒前
2秒前
Lucas完成签到,获得积分10
2秒前
3秒前
昵称完成签到,获得积分10
4秒前
海鹰完成签到,获得积分10
4秒前
zhou完成签到,获得积分10
4秒前
Issac01完成签到,获得积分20
5秒前
Akim应助TEO采纳,获得10
5秒前
zho发布了新的文献求助10
5秒前
微不足道完成签到,获得积分10
6秒前
6秒前
木木发布了新的文献求助10
6秒前
小丁发布了新的文献求助10
6秒前
Chouvikin完成签到,获得积分10
7秒前
姜呱呱呱发布了新的文献求助10
7秒前
7秒前
含蓄妖丽发布了新的文献求助10
8秒前
8秒前
ding应助陈陈采纳,获得10
8秒前
8秒前
8秒前
微不足道发布了新的文献求助10
9秒前
eff完成签到,获得积分20
9秒前
bkagyin应助淡定的灵雁采纳,获得10
9秒前
魏芸芸完成签到,获得积分10
9秒前
xiangqing完成签到 ,获得积分10
9秒前
CHEE完成签到 ,获得积分10
9秒前
9秒前
布洛芬完成签到,获得积分10
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406