Rain-component-aware capsule-GAN for single image de-raining

鉴别器 计算机科学 图像质量 人工智能 水准点(测量) 图像(数学) 组分(热力学) 噪音(视频) 计算机视觉 生成对抗网络 模式识别(心理学) 电信 地质学 物理 热力学 探测器 大地测量学
作者
Fei Yang,Jianfeng Ren,Zheng Lu,Jialu Zhang,Qian Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:123: 108377-108377 被引量:18
标识
DOI:10.1016/j.patcog.2021.108377
摘要

Images taken in the rain usually have poor visual quality, which may cause difficulties for vision-based analysis systems. The research aims to recover clean image content from a single rainy image by removing rain components without introducing any artifacts. Existing rain removal methods often model the rain component as noise, but it obviously has clear patterns instead of random noise. Motivated by this, we raise the idea to build modules to capture rain patterns for de-raining. A Rain-Component-Aware (RCA) network is proposed to capture the characteristics of the rain. We then integrate it into an image-conditioned generative adversarial network (image-cGAN) as a RCA loss to guide the generation of rainless images. This results in the proposed two-branch cGAN, where one branch aims at improving the image visual quality after de-raining, and the other aims at extracting rain patterns so that the rain could be effectively removed. To better capture the spatial relationship of different objects within an image, we incorporate the capsule structure in both generator and discriminator of cGAN, which further improves the quality of generated images. The proposed approach is hence named as RCA-cGAN. Benefited by the RCA loss based two-branch optimization and the capsule structure, RCA-cGAN achieves good de-raining effect. Extensive experimental results on several benchmark datasets show that the RCA network is effective to capture rain patterns and the proposed approach could produce much better de-raining images in terms of both subjective visual quality inspection and objective quantitative assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yy应助云哈哈采纳,获得10
1秒前
guoguosky完成签到 ,获得积分10
2秒前
2秒前
jump发布了新的文献求助10
2秒前
yy应助监理zhou采纳,获得10
3秒前
4秒前
科研小白完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
7秒前
yaya发布了新的文献求助10
9秒前
9秒前
stinkyfish发布了新的文献求助10
9秒前
Yan发布了新的文献求助10
9秒前
YK完成签到,获得积分10
9秒前
思源应助呵呵采纳,获得10
11秒前
动听若灵发布了新的文献求助10
11秒前
zhukeqinag发布了新的文献求助10
11秒前
12秒前
包容书竹发布了新的文献求助10
12秒前
13秒前
13秒前
科研通AI5应助谢育龙采纳,获得10
15秒前
15秒前
Eazin完成签到,获得积分10
16秒前
科研小白发布了新的文献求助10
17秒前
云鲲完成签到,获得积分10
18秒前
动听若灵完成签到,获得积分10
19秒前
华仔应助lili采纳,获得10
19秒前
11111发布了新的文献求助10
19秒前
领导范儿应助明明采纳,获得10
19秒前
zhukeqinag完成签到,获得积分10
20秒前
在水一方应助stinkyfish采纳,获得10
22秒前
默读完成签到,获得积分10
23秒前
23秒前
科研通AI5应助yaya采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442