清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Texture Is Important in Improving the Accuracy of Mapping Photovoltaic Power Plants: A Case Study of Ningxia Autonomous Region, China

归一化差异植被指数 环境科学 光伏系统 遥感 随机森林 计算机科学 卫星图像 航天飞机雷达地形任务 气象学 气候变化 数字高程模型 人工智能 地质学 地理 生态学 海洋学 生物
作者
Xunhe Zhang,Mojtaba Zeraatpisheh,Md. Mizanur Rahman,Shujian Wang,Ming Xu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (19): 3909-3909 被引量:32
标识
DOI:10.3390/rs13193909
摘要

Photovoltaic (PV) technology is becoming more popular due to climate change because it allows for replacing fossil-fuel power generation to reduce greenhouse gas emissions. Consequently, many countries have been attempting to generate electricity through PV power plants over the last decade. Monitoring PV power plants through satellite imagery, machine learning models, and cloud-based computing systems that may ensure rapid and precise locating with current status on a regional basis are crucial for environmental impact assessment and policy formulation. The effect of fusion of the spectral, textural with different neighbor sizes, and topographic features that may improve machine learning accuracy has not been evaluated yet in PV power plants’ mapping. This study mapped PV power plants using a random forest (RF) model on the Google Earth Engine (GEE) platform. We combined textural features calculated from the Grey Level Co-occurrence Matrix (GLCM), reflectance, thermal spectral features, and Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Modified Normalized Difference Water Index (MNDWI) from Landsat-8 imagery and elevation, slope, and aspect from Shuttle Radar Topography Mission (SRTM) as input variables. We found that the textural features from GLCM prominent enhance the accuracy of the random forest model in identifying PV power plants where a neighbor size of 30 pixels showed the best model performance. The addition of texture features can improve model accuracy from a Kappa statistic of 0.904 ± 0.05 to 0.938 ± 0.04 and overall accuracy of 97.45 ± 0.14% to 98.32 ± 0.11%. The topographic and thermal features contribute a slight improvement in modeling. This study extends the knowledge of the effect of various variables in identifying PV power plants from remote sensing data. The texture characteristics of PV power plants at different spatial resolutions deserve attention. The findings of our study have great significance for collecting the geographic information of PV power plants and evaluating their environmental impact.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzii发布了新的文献求助10
23秒前
HHW完成签到,获得积分10
27秒前
曲夜白完成签到 ,获得积分10
32秒前
Tinweng完成签到 ,获得积分10
33秒前
严冰蝶完成签到 ,获得积分10
43秒前
49秒前
腻腻发布了新的文献求助10
54秒前
58秒前
yinyin完成签到 ,获得积分10
1分钟前
Jasper应助腻腻采纳,获得10
1分钟前
1分钟前
1分钟前
zzzii完成签到,获得积分10
1分钟前
热心的思烟完成签到,获得积分10
1分钟前
xuxu完成签到 ,获得积分10
1分钟前
zhangshenrong完成签到 ,获得积分10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
sci_zt完成签到 ,获得积分10
1分钟前
2分钟前
iwsaml完成签到 ,获得积分10
2分钟前
爆炒鱼丸发布了新的文献求助30
2分钟前
共享精神应助颜笙采纳,获得10
2分钟前
Ling完成签到 ,获得积分10
2分钟前
脑洞疼应助研究新人采纳,获得10
2分钟前
爆炒鱼丸完成签到,获得积分20
2分钟前
英姑应助爆炒鱼丸采纳,获得10
2分钟前
chen完成签到 ,获得积分10
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
2分钟前
spring完成签到 ,获得积分10
2分钟前
怕黑面包完成签到 ,获得积分10
2分钟前
3分钟前
彦子完成签到 ,获得积分10
3分钟前
汪鸡毛完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
研究新人发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Singularity应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715310
求助须知:如何正确求助?哪些是违规求助? 5233315
关于积分的说明 15274268
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612831
邀请新用户注册赠送积分活动 1562976
关于科研通互助平台的介绍 1520369