Texture Is Important in Improving the Accuracy of Mapping Photovoltaic Power Plants: A Case Study of Ningxia Autonomous Region, China

归一化差异植被指数 环境科学 光伏系统 遥感 随机森林 计算机科学 卫星图像 航天飞机雷达地形任务 气象学 气候变化 数字高程模型 人工智能 地质学 地理 生态学 海洋学 生物
作者
Xunhe Zhang,Mojtaba Zeraatpisheh,Md. Mizanur Rahman,Shujian Wang,Ming Xu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (19): 3909-3909 被引量:32
标识
DOI:10.3390/rs13193909
摘要

Photovoltaic (PV) technology is becoming more popular due to climate change because it allows for replacing fossil-fuel power generation to reduce greenhouse gas emissions. Consequently, many countries have been attempting to generate electricity through PV power plants over the last decade. Monitoring PV power plants through satellite imagery, machine learning models, and cloud-based computing systems that may ensure rapid and precise locating with current status on a regional basis are crucial for environmental impact assessment and policy formulation. The effect of fusion of the spectral, textural with different neighbor sizes, and topographic features that may improve machine learning accuracy has not been evaluated yet in PV power plants’ mapping. This study mapped PV power plants using a random forest (RF) model on the Google Earth Engine (GEE) platform. We combined textural features calculated from the Grey Level Co-occurrence Matrix (GLCM), reflectance, thermal spectral features, and Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Modified Normalized Difference Water Index (MNDWI) from Landsat-8 imagery and elevation, slope, and aspect from Shuttle Radar Topography Mission (SRTM) as input variables. We found that the textural features from GLCM prominent enhance the accuracy of the random forest model in identifying PV power plants where a neighbor size of 30 pixels showed the best model performance. The addition of texture features can improve model accuracy from a Kappa statistic of 0.904 ± 0.05 to 0.938 ± 0.04 and overall accuracy of 97.45 ± 0.14% to 98.32 ± 0.11%. The topographic and thermal features contribute a slight improvement in modeling. This study extends the knowledge of the effect of various variables in identifying PV power plants from remote sensing data. The texture characteristics of PV power plants at different spatial resolutions deserve attention. The findings of our study have great significance for collecting the geographic information of PV power plants and evaluating their environmental impact.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫糖叶落完成签到,获得积分10
2秒前
Lucky.完成签到 ,获得积分0
3秒前
lululu完成签到 ,获得积分10
5秒前
知性的夏槐完成签到 ,获得积分10
5秒前
哈哈李完成签到,获得积分10
6秒前
小奇曲饼完成签到 ,获得积分10
6秒前
6秒前
misa完成签到 ,获得积分10
7秒前
ning_qing完成签到 ,获得积分10
8秒前
甜甜醉波完成签到,获得积分10
8秒前
善良的冷梅完成签到,获得积分10
8秒前
yywang关注了科研通微信公众号
8秒前
8秒前
Dlan完成签到,获得积分10
9秒前
呆萌井完成签到,获得积分10
9秒前
10秒前
鉴湖完成签到,获得积分10
10秒前
001完成签到,获得积分10
10秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
10秒前
efengmo完成签到,获得积分10
11秒前
天真南松完成签到,获得积分10
12秒前
讨厌下雨天完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
lii完成签到,获得积分10
16秒前
哦哦完成签到,获得积分10
17秒前
ninomae完成签到 ,获得积分10
20秒前
渴望者完成签到,获得积分10
20秒前
lzl007完成签到 ,获得积分10
21秒前
只争朝夕完成签到,获得积分10
23秒前
yin完成签到,获得积分10
23秒前
abbytang完成签到 ,获得积分10
23秒前
优雅沛文完成签到 ,获得积分10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
sjw525完成签到,获得积分10
25秒前
小公牛完成签到 ,获得积分10
27秒前
李正纲完成签到 ,获得积分10
28秒前
Criminology34应助1101592875采纳,获得10
33秒前
33秒前
34秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590