已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Texture Is Important in Improving the Accuracy of Mapping Photovoltaic Power Plants: A Case Study of Ningxia Autonomous Region, China

归一化差异植被指数 环境科学 光伏系统 遥感 随机森林 计算机科学 卫星图像 航天飞机雷达地形任务 气象学 气候变化 数字高程模型 人工智能 地质学 地理 生态学 海洋学 生物
作者
Xunhe Zhang,Mojtaba Zeraatpisheh,Md. Mizanur Rahman,Shujian Wang,Ming Xu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (19): 3909-3909 被引量:32
标识
DOI:10.3390/rs13193909
摘要

Photovoltaic (PV) technology is becoming more popular due to climate change because it allows for replacing fossil-fuel power generation to reduce greenhouse gas emissions. Consequently, many countries have been attempting to generate electricity through PV power plants over the last decade. Monitoring PV power plants through satellite imagery, machine learning models, and cloud-based computing systems that may ensure rapid and precise locating with current status on a regional basis are crucial for environmental impact assessment and policy formulation. The effect of fusion of the spectral, textural with different neighbor sizes, and topographic features that may improve machine learning accuracy has not been evaluated yet in PV power plants’ mapping. This study mapped PV power plants using a random forest (RF) model on the Google Earth Engine (GEE) platform. We combined textural features calculated from the Grey Level Co-occurrence Matrix (GLCM), reflectance, thermal spectral features, and Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Modified Normalized Difference Water Index (MNDWI) from Landsat-8 imagery and elevation, slope, and aspect from Shuttle Radar Topography Mission (SRTM) as input variables. We found that the textural features from GLCM prominent enhance the accuracy of the random forest model in identifying PV power plants where a neighbor size of 30 pixels showed the best model performance. The addition of texture features can improve model accuracy from a Kappa statistic of 0.904 ± 0.05 to 0.938 ± 0.04 and overall accuracy of 97.45 ± 0.14% to 98.32 ± 0.11%. The topographic and thermal features contribute a slight improvement in modeling. This study extends the knowledge of the effect of various variables in identifying PV power plants from remote sensing data. The texture characteristics of PV power plants at different spatial resolutions deserve attention. The findings of our study have great significance for collecting the geographic information of PV power plants and evaluating their environmental impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小y完成签到,获得积分10
1秒前
Sy关闭了Sy文献求助
1秒前
迅速天空完成签到 ,获得积分10
2秒前
月上柳梢头A1完成签到,获得积分10
3秒前
坦率的从丹完成签到 ,获得积分10
9秒前
Leety完成签到 ,获得积分10
11秒前
yotta关注了科研通微信公众号
13秒前
Sy完成签到,获得积分10
14秒前
19秒前
科研通AI2S应助DrW1111采纳,获得10
22秒前
23秒前
24秒前
jokerhoney完成签到,获得积分10
28秒前
干净思远完成签到,获得积分10
31秒前
kk发布了新的文献求助10
32秒前
今后应助哈哈哈采纳,获得10
34秒前
2025顺顺利利完成签到 ,获得积分10
40秒前
自信的网络完成签到 ,获得积分10
42秒前
美丽的依琴完成签到,获得积分10
42秒前
43秒前
lzy完成签到 ,获得积分10
44秒前
千寻完成签到,获得积分10
46秒前
PAD完成签到,获得积分10
48秒前
50秒前
华仔应助科研进化中采纳,获得10
54秒前
哈哈哈发布了新的文献求助10
55秒前
55秒前
旨酒欣欣应助PAD采纳,获得10
55秒前
59秒前
1分钟前
1分钟前
Zhaowx完成签到,获得积分10
1分钟前
kk发布了新的文献求助10
1分钟前
ying发布了新的文献求助10
1分钟前
lizibelle发布了新的文献求助10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
1分钟前
迷路的初柔完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176