Texture Is Important in Improving the Accuracy of Mapping Photovoltaic Power Plants: A Case Study of Ningxia Autonomous Region, China

归一化差异植被指数 环境科学 光伏系统 遥感 随机森林 计算机科学 卫星图像 航天飞机雷达地形任务 气象学 气候变化 数字高程模型 人工智能 地质学 地理 海洋学 生物 生态学
作者
Xunhe Zhang,Mojtaba Zeraatpisheh,Md. Mizanur Rahman,Shujian Wang,Ming Xu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (19): 3909-3909 被引量:32
标识
DOI:10.3390/rs13193909
摘要

Photovoltaic (PV) technology is becoming more popular due to climate change because it allows for replacing fossil-fuel power generation to reduce greenhouse gas emissions. Consequently, many countries have been attempting to generate electricity through PV power plants over the last decade. Monitoring PV power plants through satellite imagery, machine learning models, and cloud-based computing systems that may ensure rapid and precise locating with current status on a regional basis are crucial for environmental impact assessment and policy formulation. The effect of fusion of the spectral, textural with different neighbor sizes, and topographic features that may improve machine learning accuracy has not been evaluated yet in PV power plants’ mapping. This study mapped PV power plants using a random forest (RF) model on the Google Earth Engine (GEE) platform. We combined textural features calculated from the Grey Level Co-occurrence Matrix (GLCM), reflectance, thermal spectral features, and Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Modified Normalized Difference Water Index (MNDWI) from Landsat-8 imagery and elevation, slope, and aspect from Shuttle Radar Topography Mission (SRTM) as input variables. We found that the textural features from GLCM prominent enhance the accuracy of the random forest model in identifying PV power plants where a neighbor size of 30 pixels showed the best model performance. The addition of texture features can improve model accuracy from a Kappa statistic of 0.904 ± 0.05 to 0.938 ± 0.04 and overall accuracy of 97.45 ± 0.14% to 98.32 ± 0.11%. The topographic and thermal features contribute a slight improvement in modeling. This study extends the knowledge of the effect of various variables in identifying PV power plants from remote sensing data. The texture characteristics of PV power plants at different spatial resolutions deserve attention. The findings of our study have great significance for collecting the geographic information of PV power plants and evaluating their environmental impact.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助糖布里部采纳,获得10
刚刚
biu发布了新的文献求助10
刚刚
健忘的星星完成签到,获得积分20
2秒前
2秒前
2秒前
xxl发布了新的文献求助10
2秒前
3秒前
歪歪yyyyc发布了新的文献求助30
3秒前
飘逸的翼发布了新的文献求助10
4秒前
4秒前
刘文辉发布了新的文献求助10
4秒前
依梦完成签到,获得积分10
4秒前
5秒前
5秒前
Criminology34应助失眠的耳机采纳,获得10
5秒前
静默完成签到,获得积分10
5秒前
Akim应助yyyyyyyyy采纳,获得10
6秒前
猪猪侠完成签到,获得积分10
6秒前
花源应助恰你眉目如昨采纳,获得20
6秒前
bkagyin应助熊猫采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
Liurthis发布了新的文献求助30
8秒前
8秒前
仁爱听露完成签到 ,获得积分10
8秒前
8秒前
Polaris发布了新的文献求助10
9秒前
大个应助飘逸的翼采纳,获得10
9秒前
在在发布了新的文献求助10
10秒前
10秒前
10秒前
hailiangzheng完成签到,获得积分10
10秒前
歪歪yyyyc完成签到,获得积分10
10秒前
英姑应助怕黑白亦采纳,获得30
11秒前
11秒前
12秒前
Charlene完成签到,获得积分20
13秒前
万能图书馆应助轻松雁蓉采纳,获得10
14秒前
机灵人雄发布了新的文献求助10
14秒前
14秒前
AN1AN应助谢昊宸采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039