亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Texture Is Important in Improving the Accuracy of Mapping Photovoltaic Power Plants: A Case Study of Ningxia Autonomous Region, China

归一化差异植被指数 环境科学 光伏系统 遥感 随机森林 计算机科学 卫星图像 航天飞机雷达地形任务 气象学 气候变化 数字高程模型 人工智能 地质学 地理 海洋学 生物 生态学
作者
Xunhe Zhang,Mojtaba Zeraatpisheh,Md. Mizanur Rahman,Shujian Wang,Ming Xu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (19): 3909-3909 被引量:32
标识
DOI:10.3390/rs13193909
摘要

Photovoltaic (PV) technology is becoming more popular due to climate change because it allows for replacing fossil-fuel power generation to reduce greenhouse gas emissions. Consequently, many countries have been attempting to generate electricity through PV power plants over the last decade. Monitoring PV power plants through satellite imagery, machine learning models, and cloud-based computing systems that may ensure rapid and precise locating with current status on a regional basis are crucial for environmental impact assessment and policy formulation. The effect of fusion of the spectral, textural with different neighbor sizes, and topographic features that may improve machine learning accuracy has not been evaluated yet in PV power plants’ mapping. This study mapped PV power plants using a random forest (RF) model on the Google Earth Engine (GEE) platform. We combined textural features calculated from the Grey Level Co-occurrence Matrix (GLCM), reflectance, thermal spectral features, and Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Modified Normalized Difference Water Index (MNDWI) from Landsat-8 imagery and elevation, slope, and aspect from Shuttle Radar Topography Mission (SRTM) as input variables. We found that the textural features from GLCM prominent enhance the accuracy of the random forest model in identifying PV power plants where a neighbor size of 30 pixels showed the best model performance. The addition of texture features can improve model accuracy from a Kappa statistic of 0.904 ± 0.05 to 0.938 ± 0.04 and overall accuracy of 97.45 ± 0.14% to 98.32 ± 0.11%. The topographic and thermal features contribute a slight improvement in modeling. This study extends the knowledge of the effect of various variables in identifying PV power plants from remote sensing data. The texture characteristics of PV power plants at different spatial resolutions deserve attention. The findings of our study have great significance for collecting the geographic information of PV power plants and evaluating their environmental impact.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
科研通AI6应助邓润杰采纳,获得10
8秒前
FashionBoy应助傻傻的修洁采纳,获得10
10秒前
情怀应助Radiance采纳,获得10
14秒前
wangxw完成签到,获得积分10
15秒前
17秒前
科研通AI2S应助傻傻的修洁采纳,获得10
17秒前
1033524682发布了新的文献求助30
21秒前
21秒前
neao完成签到 ,获得积分10
24秒前
Lucas应助邓润杰采纳,获得10
25秒前
Radiance发布了新的文献求助10
27秒前
Ava应助傻傻的修洁采纳,获得10
33秒前
Radiance完成签到,获得积分10
35秒前
ceeray23发布了新的文献求助20
35秒前
丘比特应助邓润杰采纳,获得10
36秒前
1033524682完成签到,获得积分10
37秒前
成就觅海完成签到 ,获得积分10
38秒前
窝不想写论文完成签到 ,获得积分10
41秒前
44秒前
45秒前
科研通AI6应助Li采纳,获得50
46秒前
小马甲应助君寻采纳,获得10
46秒前
47秒前
47秒前
47秒前
传奇3应助邓润杰采纳,获得10
48秒前
sandy发布了新的文献求助10
52秒前
科研通AI6应助MIMI采纳,获得10
53秒前
科研通AI6应助邓润杰采纳,获得10
56秒前
在水一方应助傻傻的修洁采纳,获得10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
Akaza完成签到 ,获得积分10
1分钟前
1分钟前
高兴宝贝完成签到 ,获得积分10
1分钟前
打打应助傻傻的修洁采纳,获得10
1分钟前
脑洞疼应助munchys采纳,获得10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
达西苏发布了新的文献求助30
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573343
求助须知:如何正确求助?哪些是违规求助? 4659427
关于积分的说明 14724572
捐赠科研通 4599247
什么是DOI,文献DOI怎么找? 2524237
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737