A numerical study of mixing intensification for highly viscous fluids in multistage rotor–stator mixers

经销商 无量纲量 混合(物理) 机械 功率(物理) 功率消耗 转子(电动) 材料科学 定子 机械工程 工程类 物理 热力学 量子力学
作者
Liying Chen,Junheng Guo,Wenpeng Li,Shuchun Zhao,Wei Li,Jinli Zhang
出处
期刊:Chinese Journal of Chemical Engineering [Elsevier]
卷期号:47: 218-230 被引量:4
标识
DOI:10.1016/j.cjche.2021.08.012
摘要

How to achieve uniform mixing of highly viscous fluids with low energy consumption is a major industry demand and one of the hot spots of mixing research. A typical multistage rotor–stator mixer (MRSM) equipped with a distributor was investigated to disclose the effects on the mixing performance and power consumption for highly viscous fluids via numerical simulation, considering the influence factors associated with different geometric parameters of both MRSM and the distributor. The mixing index and power consumption are used to evaluate the performance of the mixers. The dimensionless correlations for the mixing index and the power consumption are established considering the factors including the flow rate, rotor speed, the number of mixing units. Adopting the optimized mixer with the distributor (X1-T1), the mixing index increases to 0.85 (obviously higher than 0.46 for the mixer T1 without a distributor), meanwhile the corresponding power consumption is about 1/5 of that of T1 achieving the same mixing effect. It illustrates that the distributor can significantly improve the mixing of highly viscous fluids in the MRSM without the cost of large power consumption. These results would provide a guidance on the design and optimization of multistage rotor–stator mixers in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷婷完成签到,获得积分10
刚刚
翔哥完成签到,获得积分10
1秒前
shotgod发布了新的文献求助10
1秒前
消烦员完成签到 ,获得积分10
1秒前
杳鸢应助su采纳,获得30
3秒前
good发布了新的文献求助10
3秒前
chenxin7271完成签到,获得积分10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
yizhiGao应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
马蹄应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
研友_LX66qZ完成签到,获得积分10
3秒前
传奇3应助科研通管家采纳,获得30
4秒前
Akim应助火星上的听云采纳,获得10
4秒前
唐博凡应助科研通管家采纳,获得10
4秒前
西柚完成签到,获得积分10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
kingwill应助科研通管家采纳,获得20
4秒前
SciGPT应助洛鸢采纳,获得10
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
soso应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
yizhiGao应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
星威应助科研通管家采纳,获得20
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762