Detection and Tracking Meet Drones Challenge

无人机 计算机科学 目标检测 人工智能 水准点(测量) 视频跟踪 计算机视觉 对象(语法) 跟踪(教育) 比例(比率) 可视化 模式识别(心理学) 地理 地图学 心理学 生物 遗传学 教育学
作者
Pengfei Zhu,Longyin Wen,Dawei Du,Xiao Bian,Heng Fan,Qinghua Hu,Haibin Ling
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (11): 7380-7399 被引量:379
标识
DOI:10.1109/tpami.2021.3119563
摘要

Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条铅笔发布了新的文献求助10
刚刚
刚刚
1秒前
爱科研的龙完成签到,获得积分10
1秒前
2秒前
Zero完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助yang采纳,获得10
2秒前
科研小白完成签到,获得积分10
3秒前
兴奋不弱完成签到 ,获得积分10
3秒前
不要再忘登陆密码了完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
想飞的猪发布了新的文献求助10
3秒前
斯文败类应助科研通管家采纳,获得20
3秒前
FashionBoy应助努力毕业的瓜采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
荡乎宇宙如虚舟完成签到,获得积分10
3秒前
害羞破茧发布了新的文献求助10
4秒前
cici0213完成签到 ,获得积分10
4秒前
可爱的函函应助BlingBling采纳,获得10
4秒前
5秒前
ZXW发布了新的文献求助50
5秒前
研友_ZeqAxZ完成签到,获得积分10
5秒前
6秒前
杨羕完成签到,获得积分10
8秒前
慕青应助坚定背包采纳,获得10
8秒前
CodeCraft应助淡定鸿涛采纳,获得10
8秒前
Ying完成签到,获得积分10
9秒前
坚定芷烟完成签到,获得积分10
9秒前
wqq完成签到 ,获得积分10
9秒前
传奇3应助李佳轩采纳,获得10
9秒前
yy发布了新的文献求助10
10秒前
chengya完成签到,获得积分10
10秒前
LCXLA完成签到,获得积分10
10秒前
害羞破茧完成签到,获得积分10
10秒前
研友_LOK59L完成签到,获得积分10
10秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167375
求助须知:如何正确求助?哪些是违规求助? 2818893
关于积分的说明 7923236
捐赠科研通 2478710
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443