Abstract The electroreduction of carbon dioxide is a promising strategy to synthesize value‐added feedstocks and realize carbon neutralization. Copper catalysts are well‐known to be active for selective electroreduction of CO 2 to multicarbon products, although the role played by the surface architecture is not fully understood. Herein, mesoporous Cu nanoribbons are constructed via in‐situ electrochemical reduction of Cu based metal organic frameworks for the highly selective synthesis of C 2+ chemicals. With the mesoporous structure, a high C 2+ Faradaic efficiency of 82.3% with a partial current density of 347.9 mA cm −2 is achieved in a flow‐cell electrolyzer. Controlled electroreduction of CO 2 with Cu nanoribbons exhibited clearly greater selectivity towards C 2+ products than Cu nanoleaves and Cu nanorods without porous structures. Finite difference time domain results indicate that the mesoporous structure can enhance the electric field on the catalyst surface, which increases the concentration of K + and OH − , thus allowing the authors to promote CO 2 reduction pathways towards C 2+ products.