亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Boolean Modelling Approach for Genetic Network Inference

基因调控网络 推论 布尔网络 计算机科学 数据挖掘 冗余(工程) 理论计算机科学 算法 人工智能 布尔函数 基因 生物 基因表达 生物化学 操作系统
作者
Hasini Nakulugamuwa Gamage,Madhu Chetty,Adrian Shatte,Jennifer Hallinan
标识
DOI:10.1109/cibcb49929.2021.9562881
摘要

The inference of Gene Regulatory Networks (GRNs) from time series gene expression data is an effective approach for unveiling important underlying gene-gene relationships and dynamics. While various computational models exist for accurate inference of GRNs, many are computationally inefficient, and do not focus on simultaneous inference of both network topology and dynamics. In this paper, we introduce a simple, Boolean network model-based solution for efficient inference of GRNs. First, the microarray expression data are discretized using the average gene expression value as a threshold. This step permits an experimental approach of defining the maximum indegree of a network. Next, regulatory genes, including the self-regulations for each target gene, are inferred using estimated multivariate mutual information-based Min-Redundancy Max-Relevance Criterion, and further accurate inference is performed by a swapping operation. Subsequently, we introduce a new method, combining Boolean network regulation modelling and Pearson correlation coefficient to identify the interaction types (inhibition or activation) of the regulatory genes. This method is utilized for the efficient determination of the optimal regulatory rule, consisting AND, OR, and NOT operators, by defining the accurate application of the NOT operation in conjunction and disjunction Boolean functions. The proposed approach is evaluated using two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network. Although the Structural Accuracy is approximately the same as existing methods (MIBNI, REVEAL, Best-Fit, BIBN, and CST), the proposed method outperforms all these methods with respect to efficiency and Dynamic Accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋佳珍完成签到,获得积分10
3秒前
BowieHuang应助舒心的夜白采纳,获得10
26秒前
MchemG应助科研通管家采纳,获得30
33秒前
Criminology34应助科研通管家采纳,获得10
33秒前
MchemG应助科研通管家采纳,获得30
34秒前
舒心的夜白完成签到,获得积分10
47秒前
1分钟前
shunli完成签到 ,获得积分10
1分钟前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
李海平完成签到 ,获得积分10
1分钟前
敞敞亮亮完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
狂野丹翠应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
烟花应助Marshall采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
4分钟前
半城烟火完成签到 ,获得积分10
4分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得30
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714995
求助须知:如何正确求助?哪些是违规求助? 5229079
关于积分的说明 15273941
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612682
邀请新用户注册赠送积分活动 1562873
关于科研通互助平台的介绍 1520157