An Efficient Boolean Modelling Approach for Genetic Network Inference

基因调控网络 推论 布尔网络 计算机科学 数据挖掘 冗余(工程) 理论计算机科学 算法 人工智能 布尔函数 基因 生物 基因表达 生物化学 操作系统
作者
Hasini Nakulugamuwa Gamage,Madhu Chetty,Adrian Shatte,Jennifer Hallinan
标识
DOI:10.1109/cibcb49929.2021.9562881
摘要

The inference of Gene Regulatory Networks (GRNs) from time series gene expression data is an effective approach for unveiling important underlying gene-gene relationships and dynamics. While various computational models exist for accurate inference of GRNs, many are computationally inefficient, and do not focus on simultaneous inference of both network topology and dynamics. In this paper, we introduce a simple, Boolean network model-based solution for efficient inference of GRNs. First, the microarray expression data are discretized using the average gene expression value as a threshold. This step permits an experimental approach of defining the maximum indegree of a network. Next, regulatory genes, including the self-regulations for each target gene, are inferred using estimated multivariate mutual information-based Min-Redundancy Max-Relevance Criterion, and further accurate inference is performed by a swapping operation. Subsequently, we introduce a new method, combining Boolean network regulation modelling and Pearson correlation coefficient to identify the interaction types (inhibition or activation) of the regulatory genes. This method is utilized for the efficient determination of the optimal regulatory rule, consisting AND, OR, and NOT operators, by defining the accurate application of the NOT operation in conjunction and disjunction Boolean functions. The proposed approach is evaluated using two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network. Although the Structural Accuracy is approximately the same as existing methods (MIBNI, REVEAL, Best-Fit, BIBN, and CST), the proposed method outperforms all these methods with respect to efficiency and Dynamic Accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷傲雨寒完成签到,获得积分10
2秒前
我是老大应助Taylor采纳,获得10
2秒前
CipherSage应助沙福林采纳,获得10
2秒前
3秒前
6秒前
6秒前
Akim应助寒冷忆山采纳,获得10
6秒前
Ava应助lxw采纳,获得10
7秒前
8秒前
8秒前
蔚111完成签到 ,获得积分10
9秒前
10秒前
zho应助luo2采纳,获得10
10秒前
zho应助晴烟ZYM采纳,获得40
10秒前
11秒前
qyang发布了新的文献求助10
11秒前
11秒前
11秒前
gtt发布了新的文献求助10
12秒前
不如看海完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
zhx发布了新的文献求助200
14秒前
15秒前
Rondab应助jessie采纳,获得10
15秒前
15秒前
香蕉觅云应助愤怒的稀采纳,获得10
16秒前
17秒前
17秒前
18秒前
19秒前
21秒前
21秒前
图治发布了新的文献求助10
21秒前
22秒前
麦子发布了新的文献求助10
23秒前
lijia3发布了新的文献求助10
23秒前
xinyueyue发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629