An Efficient Boolean Modelling Approach for Genetic Network Inference

基因调控网络 推论 布尔网络 计算机科学 数据挖掘 冗余(工程) 理论计算机科学 算法 人工智能 布尔函数 基因 生物 基因表达 生物化学 操作系统
作者
Hasini Nakulugamuwa Gamage,Madhu Chetty,Adrian Shatte,Jennifer Hallinan
标识
DOI:10.1109/cibcb49929.2021.9562881
摘要

The inference of Gene Regulatory Networks (GRNs) from time series gene expression data is an effective approach for unveiling important underlying gene-gene relationships and dynamics. While various computational models exist for accurate inference of GRNs, many are computationally inefficient, and do not focus on simultaneous inference of both network topology and dynamics. In this paper, we introduce a simple, Boolean network model-based solution for efficient inference of GRNs. First, the microarray expression data are discretized using the average gene expression value as a threshold. This step permits an experimental approach of defining the maximum indegree of a network. Next, regulatory genes, including the self-regulations for each target gene, are inferred using estimated multivariate mutual information-based Min-Redundancy Max-Relevance Criterion, and further accurate inference is performed by a swapping operation. Subsequently, we introduce a new method, combining Boolean network regulation modelling and Pearson correlation coefficient to identify the interaction types (inhibition or activation) of the regulatory genes. This method is utilized for the efficient determination of the optimal regulatory rule, consisting AND, OR, and NOT operators, by defining the accurate application of the NOT operation in conjunction and disjunction Boolean functions. The proposed approach is evaluated using two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network. Although the Structural Accuracy is approximately the same as existing methods (MIBNI, REVEAL, Best-Fit, BIBN, and CST), the proposed method outperforms all these methods with respect to efficiency and Dynamic Accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萌发布了新的文献求助10
1秒前
1秒前
ding应助宝宝采纳,获得10
1秒前
1秒前
pingping发布了新的文献求助10
2秒前
天天快乐应助li采纳,获得10
2秒前
能干的邹发布了新的文献求助10
3秒前
yuwshuihen发布了新的文献求助10
3秒前
贲碧曼完成签到 ,获得积分10
3秒前
大约在冬季完成签到,获得积分10
4秒前
踏实的幻珊完成签到,获得积分10
6秒前
6秒前
6秒前
李龙龙应助beleve采纳,获得10
6秒前
8秒前
11秒前
平常煎饼完成签到,获得积分10
12秒前
decademe发布了新的文献求助10
12秒前
13秒前
四月发布了新的文献求助10
14秒前
15秒前
16秒前
yuwshuihen完成签到,获得积分10
16秒前
小艾同学发布了新的文献求助20
16秒前
黄青青完成签到,获得积分10
17秒前
张茂润完成签到,获得积分10
18秒前
18秒前
Orange应助小萌采纳,获得10
18秒前
xiaoming应助科研通管家采纳,获得10
20秒前
浅尝离白应助科研通管家采纳,获得30
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
马大翔应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
不配.应助科研通管家采纳,获得10
20秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053