Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

计算机科学 人工智能 目标检测 交叉口(航空) 编码(集合论) 对象(语法) 探测器 基本事实 匹配(统计) 过程(计算) 分歧(语言学) 样品(材料) 旋转(数学) 计算机视觉 模式识别(心理学) 数学 统计 航空航天工程 哲学 工程类 集合(抽象数据类型) 化学 操作系统 程序设计语言 电信 色谱法 语言学
作者
Qi Ming,Zhiqiang Zhou,Lingjuan Miao,Hongwei Zhang,Linhao Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (3): 2355-2363 被引量:250
标识
DOI:10.1609/aaai.v35i3.16336
摘要

Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., and thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes. Intersection-over-Union (IoU) is then applied to sample the positive and negative candidates for training. However, we observe that the selected positive anchors cannot always ensure accurate detections after regression, while some negative samples can achieve accurate localization. It indicates that the quality assessment of anchors through IoU is not appropriate, and this further leads to inconsistency between classification confidence and localization accuracy. In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carries out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated. With the newly introduced DAL, we can achieve superior detection performance for arbitrary-oriented objects with only a few horizontal preset anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA, UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method achieves substantial improvement compared with the baseline model. Besides, our approach is also universal for object detection using horizontal bound box. The code and models are available at https://github.com/ming71/DAL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助顺顺过过采纳,获得10
刚刚
水牛完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
柴胡发布了新的文献求助10
6秒前
久木发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
loong应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
lllll发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
yjy123应助科研通管家采纳,获得10
8秒前
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
迅速翠风应助科研通管家采纳,获得10
8秒前
loong应助科研通管家采纳,获得10
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
木子杨发布了新的文献求助30
9秒前
9秒前
yjy123应助科研通管家采纳,获得10
9秒前
Twonej应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838