Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

计算机科学 人工智能 目标检测 交叉口(航空) 编码(集合论) 对象(语法) 探测器 基本事实 匹配(统计) 过程(计算) 分歧(语言学) 样品(材料) 旋转(数学) 计算机视觉 模式识别(心理学) 数学 统计 航空航天工程 哲学 工程类 集合(抽象数据类型) 化学 操作系统 程序设计语言 电信 色谱法 语言学
作者
Qi Ming,Zhiqiang Zhou,Lingjuan Miao,Hongwei Zhang,Linhao Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (3): 2355-2363 被引量:250
标识
DOI:10.1609/aaai.v35i3.16336
摘要

Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., and thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes. Intersection-over-Union (IoU) is then applied to sample the positive and negative candidates for training. However, we observe that the selected positive anchors cannot always ensure accurate detections after regression, while some negative samples can achieve accurate localization. It indicates that the quality assessment of anchors through IoU is not appropriate, and this further leads to inconsistency between classification confidence and localization accuracy. In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carries out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated. With the newly introduced DAL, we can achieve superior detection performance for arbitrary-oriented objects with only a few horizontal preset anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA, UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method achieves substantial improvement compared with the baseline model. Besides, our approach is also universal for object detection using horizontal bound box. The code and models are available at https://github.com/ming71/DAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
glassman发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
米糊发布了新的文献求助10
3秒前
3秒前
Wang发布了新的文献求助10
3秒前
onlyone完成签到,获得积分10
3秒前
YY230512发布了新的文献求助10
4秒前
Hello应助WANG采纳,获得10
5秒前
Albert发布了新的文献求助10
5秒前
Evy发布了新的文献求助30
6秒前
6秒前
dalong完成签到,获得积分10
7秒前
kingwill发布了新的文献求助10
8秒前
周老八发布了新的文献求助10
10秒前
孟长歌发布了新的文献求助10
13秒前
13秒前
14秒前
大力完成签到 ,获得积分10
15秒前
Orange应助周老八采纳,获得10
16秒前
深情安青应助Wang采纳,获得10
16秒前
李爱国应助愉快幻悲采纳,获得10
17秒前
韵寒发布了新的文献求助10
17秒前
17秒前
niko发布了新的文献求助10
18秒前
20秒前
chendahuanhuan完成签到 ,获得积分10
20秒前
无脚鸟完成签到,获得积分10
21秒前
科研小白阳阳完成签到,获得积分10
21秒前
22秒前
24秒前
体贴苞络完成签到,获得积分10
26秒前
米粒儿发布了新的文献求助10
26秒前
27秒前
文艺的青旋完成签到 ,获得积分10
28秒前
zhenxing发布了新的文献求助10
28秒前
韵寒完成签到,获得积分10
29秒前
orixero应助六五采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993903
求助须知:如何正确求助?哪些是违规求助? 3534470
关于积分的说明 11265717
捐赠科研通 3274344
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883170
科研通“疑难数据库(出版商)”最低求助积分说明 809712