Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

计算机科学 人工智能 目标检测 交叉口(航空) 编码(集合论) 对象(语法) 探测器 基本事实 匹配(统计) 过程(计算) 分歧(语言学) 样品(材料) 旋转(数学) 计算机视觉 模式识别(心理学) 数学 统计 航空航天工程 哲学 工程类 集合(抽象数据类型) 化学 操作系统 程序设计语言 电信 色谱法 语言学
作者
Qi Ming,Zhiqiang Zhou,Lingjuan Miao,Hongwei Zhang,Linhao Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (3): 2355-2363 被引量:250
标识
DOI:10.1609/aaai.v35i3.16336
摘要

Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., and thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes. Intersection-over-Union (IoU) is then applied to sample the positive and negative candidates for training. However, we observe that the selected positive anchors cannot always ensure accurate detections after regression, while some negative samples can achieve accurate localization. It indicates that the quality assessment of anchors through IoU is not appropriate, and this further leads to inconsistency between classification confidence and localization accuracy. In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carries out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated. With the newly introduced DAL, we can achieve superior detection performance for arbitrary-oriented objects with only a few horizontal preset anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA, UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method achieves substantial improvement compared with the baseline model. Besides, our approach is also universal for object detection using horizontal bound box. The code and models are available at https://github.com/ming71/DAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Ilyas0525完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助Xiaoyu采纳,获得10
3秒前
3秒前
4秒前
41发布了新的文献求助10
4秒前
liiy发布了新的文献求助10
4秒前
一个小太阳鸭完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
达达完成签到,获得积分10
5秒前
6秒前
橙橙橙发布了新的文献求助10
6秒前
lucky应助积极的小懒虫采纳,获得10
6秒前
6秒前
6秒前
传奇3应助hs采纳,获得10
7秒前
chu发布了新的文献求助30
7秒前
Elio完成签到 ,获得积分10
8秒前
9秒前
sjx1116完成签到,获得积分10
9秒前
西贝完成签到,获得积分10
9秒前
这小猪真帅完成签到,获得积分10
10秒前
Chou发布了新的文献求助10
11秒前
小猫爷爷完成签到,获得积分10
11秒前
5007zsx完成签到,获得积分0
11秒前
1234发布了新的文献求助10
11秒前
yjh发布了新的文献求助10
11秒前
无花果应助最专业采纳,获得10
11秒前
科研宝完成签到,获得积分10
11秒前
77发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
科目三应助xuan采纳,获得10
12秒前
dexrer应助小鱼采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312815
求助须知:如何正确求助?哪些是违规求助? 2945259
关于积分的说明 8524020
捐赠科研通 2621043
什么是DOI,文献DOI怎么找? 1433283
科研通“疑难数据库(出版商)”最低求助积分说明 664924
邀请新用户注册赠送积分活动 650271