Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

计算机科学 人工智能 目标检测 交叉口(航空) 编码(集合论) 对象(语法) 探测器 基本事实 匹配(统计) 过程(计算) 分歧(语言学) 样品(材料) 旋转(数学) 计算机视觉 模式识别(心理学) 数学 统计 航空航天工程 哲学 工程类 集合(抽象数据类型) 化学 操作系统 程序设计语言 电信 色谱法 语言学
作者
Qi Ming,Zhiqiang Zhou,Lingjuan Miao,Hongwei Zhang,Linhao Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (3): 2355-2363 被引量:250
标识
DOI:10.1609/aaai.v35i3.16336
摘要

Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., and thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes. Intersection-over-Union (IoU) is then applied to sample the positive and negative candidates for training. However, we observe that the selected positive anchors cannot always ensure accurate detections after regression, while some negative samples can achieve accurate localization. It indicates that the quality assessment of anchors through IoU is not appropriate, and this further leads to inconsistency between classification confidence and localization accuracy. In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carries out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated. With the newly introduced DAL, we can achieve superior detection performance for arbitrary-oriented objects with only a few horizontal preset anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA, UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method achieves substantial improvement compared with the baseline model. Besides, our approach is also universal for object detection using horizontal bound box. The code and models are available at https://github.com/ming71/DAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到,获得积分10
刚刚
1秒前
廖妙菱发布了新的文献求助10
2秒前
汉堡包应助土豆采纳,获得10
2秒前
凉笙墨染完成签到,获得积分10
3秒前
赘婿应助勤劳寡妇采纳,获得10
3秒前
4秒前
4秒前
上官若男应助faiting采纳,获得10
4秒前
fdawsfasf完成签到,获得积分10
4秒前
4秒前
菜鸟队长完成签到,获得积分10
5秒前
寒江雪应助布布采纳,获得10
5秒前
科研通AI6应助春天的鱼采纳,获得10
6秒前
6秒前
可耐的紫夏完成签到,获得积分10
6秒前
文轩发布了新的文献求助10
7秒前
科研小白完成签到,获得积分10
7秒前
8秒前
Wefaily应助Melody采纳,获得10
8秒前
浮游应助机灵饼干采纳,获得10
9秒前
221u完成签到 ,获得积分10
10秒前
MYLCX完成签到,获得积分10
10秒前
飞跃完成签到,获得积分10
10秒前
杜慧玲发布了新的文献求助10
10秒前
ksl应助旰旰旰采纳,获得10
10秒前
hmli发布了新的文献求助10
12秒前
wupan发布了新的文献求助30
12秒前
12秒前
橙色的小火山完成签到,获得积分10
12秒前
jfw完成签到,获得积分10
12秒前
13秒前
西格完成签到 ,获得积分10
14秒前
文艺鞋子发布了新的文献求助20
14秒前
鲁旭完成签到,获得积分10
16秒前
雪绪Yukio完成签到,获得积分10
16秒前
16秒前
害羞向日葵完成签到 ,获得积分10
17秒前
Owen应助qiii采纳,获得10
17秒前
arniu2008应助DARKNESS采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434617
求助须知:如何正确求助?哪些是违规求助? 4546969
关于积分的说明 14205190
捐赠科研通 4466978
什么是DOI,文献DOI怎么找? 2448366
邀请新用户注册赠送积分活动 1439268
关于科研通互助平台的介绍 1416060