Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

计算机科学 人工智能 目标检测 交叉口(航空) 编码(集合论) 对象(语法) 探测器 基本事实 匹配(统计) 过程(计算) 分歧(语言学) 样品(材料) 旋转(数学) 计算机视觉 模式识别(心理学) 数学 统计 航空航天工程 哲学 工程类 集合(抽象数据类型) 化学 操作系统 程序设计语言 电信 色谱法 语言学
作者
Qi Ming,Zhiqiang Zhou,Lingjuan Miao,Hongwei Zhang,Linhao Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (3): 2355-2363 被引量:250
标识
DOI:10.1609/aaai.v35i3.16336
摘要

Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., and thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes. Intersection-over-Union (IoU) is then applied to sample the positive and negative candidates for training. However, we observe that the selected positive anchors cannot always ensure accurate detections after regression, while some negative samples can achieve accurate localization. It indicates that the quality assessment of anchors through IoU is not appropriate, and this further leads to inconsistency between classification confidence and localization accuracy. In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carries out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated. With the newly introduced DAL, we can achieve superior detection performance for arbitrary-oriented objects with only a few horizontal preset anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA, UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method achieves substantial improvement compared with the baseline model. Besides, our approach is also universal for object detection using horizontal bound box. The code and models are available at https://github.com/ming71/DAL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TB123发布了新的文献求助10
1秒前
希望天下0贩的0应助希希采纳,获得10
1秒前
又夏发布了新的文献求助10
2秒前
唯伊发布了新的文献求助10
2秒前
酌鹿发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
四夕完成签到,获得积分10
4秒前
epsilonN完成签到 ,获得积分10
4秒前
oo完成签到,获得积分10
4秒前
YUAN完成签到,获得积分10
4秒前
正方形劈盐子完成签到,获得积分10
5秒前
5秒前
ArCaaaat完成签到,获得积分10
6秒前
Aliothae完成签到,获得积分10
8秒前
月亮完成签到 ,获得积分10
8秒前
weddcf发布了新的文献求助10
9秒前
9秒前
义气的元绿完成签到,获得积分10
10秒前
ArCaaaat发布了新的文献求助10
10秒前
ding应助吴学仕采纳,获得10
12秒前
汉堡包应助suchui采纳,获得10
13秒前
15秒前
希希发布了新的文献求助10
15秒前
余姓懒完成签到,获得积分10
15秒前
Light完成签到,获得积分10
17秒前
17秒前
善学以致用应助LaLune采纳,获得10
18秒前
又夏完成签到,获得积分10
18秒前
FashionBoy应助明明采纳,获得10
18秒前
往徕完成签到,获得积分10
19秒前
搜集达人应助ziyue采纳,获得10
20秒前
doctorw发布了新的文献求助10
20秒前
21秒前
21秒前
雪白发卡完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693989
求助须知:如何正确求助?哪些是违规求助? 5095107
关于积分的说明 15212740
捐赠科研通 4850704
什么是DOI,文献DOI怎么找? 2601931
邀请新用户注册赠送积分活动 1553766
关于科研通互助平台的介绍 1511712