A Survey on Multiview Clustering

聚类分析 计算机科学 水准点(测量) 判别式 人工智能 机器学习 分类 班级(哲学) 模式识别(心理学) 数据挖掘 大地测量学 地理
作者
Guoqing Chao,Shiliang Sun,Jinbo Bi
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:2 (2): 146-168 被引量:253
标识
DOI:10.1109/tai.2021.3065894
摘要

Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multi-view data. Multi-view clustering, that clusters subjects into subgroups using multi-view data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar to other machine learning methods, we categorize them into generative and discriminative classes. In discriminative class, based on the way of view integration, we split it further into five groups: Common Eigenvector Matrix, Common Coefficient Matrix, Common Indicator Matrix, Direct Combination and Combination After Projection. Furthermore, we relate MVC to other topics: multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated for practitioners. Some benchmark multi-view datasets are introduced and representative MVC algorithms from each group are empirically evaluated to analyze how they perform on benchmark datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缘之完成签到,获得积分20
刚刚
1秒前
SICHEN应助文艺香菱采纳,获得10
1秒前
1秒前
1秒前
2秒前
晨屿完成签到,获得积分10
3秒前
3秒前
SRsora发布了新的文献求助10
4秒前
大模型应助carly采纳,获得10
4秒前
小黄发布了新的文献求助10
5秒前
dryan1110发布了新的文献求助10
5秒前
6秒前
李欣华发布了新的文献求助10
6秒前
askaga发布了新的文献求助30
7秒前
sh完成签到,获得积分10
7秒前
赵润泽完成签到 ,获得积分10
9秒前
9秒前
9秒前
zzh完成签到,获得积分20
9秒前
实验好难应助剑酒采纳,获得10
10秒前
852应助ddd采纳,获得10
11秒前
zhang发布了新的文献求助10
11秒前
JamesPei应助果糖不加糖采纳,获得10
12秒前
12秒前
13秒前
油纸伞发布了新的文献求助10
13秒前
蛋卷完成签到 ,获得积分10
13秒前
betterme完成签到,获得积分10
13秒前
enen发布了新的文献求助10
14秒前
slby完成签到 ,获得积分10
14秒前
14秒前
14秒前
阿虎发布了新的文献求助30
16秒前
小瑾的白日梦完成签到,获得积分10
16秒前
BAI_1发布了新的文献求助10
17秒前
17秒前
17秒前
xz发布了新的文献求助10
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668137
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9770068
捐赠科研通 2936494
什么是DOI,文献DOI怎么找? 1608601
邀请新用户注册赠送积分活动 759732
科研通“疑难数据库(出版商)”最低求助积分说明 735474