CT PUF: Configurable Tristate PUF Against Machine Learning Attacks for IoT Security

计算机科学 仲裁人 物理不可克隆功能 机器学习 硬件安全模块 环形振荡器 现场可编程门阵列 支持向量机 嵌入式系统 认证(法律) 人工智能 密码学 计算机硬件 算法 计算机安全 工程类 CMOS芯片 电子工程
作者
Jiliang Zhang,Chaoqun Shen,Zhiyang Guo,Qiang Wu,Wanli Chang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (16): 14452-14462 被引量:50
标识
DOI:10.1109/jiot.2021.3090475
摘要

Physical unclonable function (PUF) is a promising lightweight hardware security primitive for resource-limited Internet-of-Things (IoT) devices. Strong PUFs are suitable for lightweight device authentication because it can generate quantities of challenge-response pairs. Unfortunately, while the machine learning (ML) techniques have benefited various areas, such as Internet, industrial automation, robotics and gaming, they pose a severe threat to PUFs by easily modelling their behavior. This article first shows that even a recently reported dual-mode PUF can be cloned by ML (prediction accuracy of up to 95%). To solve this issue, we propose a configurable tristate (CT) PUF which can flexibly perform as an arbiter PUF, a ring oscillator (RO) PUF, or a bistable ring (BR) PUF with a bitwise XOR-based mechanism to obfuscate the relationship between the challenge and the response, hence resisting the ML attacks. An authentication protocol for the use in IoT security is presented. The CT PUF is implemented on Xilinx ZedBoard FPGAs with placement and routing details described. The experimental results show that the modelling accuracy of logistic regression (LR), support vector machine (SVM), covariance matrix adaptation evolutionary strategies (CMA-ES), and artificial neural network (ANN) is close to 60% (50% as the ideal number in theory) while meeting the PUF requirements for uniformity, reliability, and uniqueness. The hardware overhead and power consumption are slight. The entire project has been open sourced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SweepingMonk应助梁小鑫采纳,获得10
刚刚
DTBTY完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
JACK发布了新的文献求助10
2秒前
小宋同学不能怂完成签到 ,获得积分10
2秒前
Peng丶Young完成签到,获得积分10
2秒前
2秒前
学术新星完成签到,获得积分10
2秒前
传奇3应助欢欢采纳,获得10
3秒前
littlewhite发布了新的文献求助30
3秒前
木子发布了新的文献求助10
3秒前
3秒前
NiLou完成签到,获得积分10
3秒前
沉静的颦发布了新的文献求助10
4秒前
4秒前
yier完成签到,获得积分10
6秒前
6秒前
凉茗余香完成签到 ,获得积分10
7秒前
蜡笔小猪发布了新的文献求助10
7秒前
超级蘑菇关注了科研通微信公众号
7秒前
滴滴完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
执着的怜寒完成签到,获得积分10
9秒前
伍六七完成签到 ,获得积分10
9秒前
诸觅双完成签到 ,获得积分10
9秒前
无花果应助wbgwudi采纳,获得30
11秒前
zhangyuheng完成签到,获得积分10
11秒前
安静的安寒完成签到,获得积分10
11秒前
跳跃聪健完成签到,获得积分10
12秒前
Negan完成签到,获得积分10
12秒前
12秒前
a1oft完成签到,获得积分10
13秒前
细腻沅发布了新的文献求助10
13秒前
李爱国应助温柔的十三采纳,获得10
13秒前
13秒前
橘子海完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740