化学
杠杆(统计)
从头算
计算化学
量子化学
化学位移
耦合常数
耦合
标量(数学)
量子化学
分子
核磁共振波谱
统计物理学
计算机科学
人工智能
量子力学
物理化学
物理
有机化学
数学
超分子化学
几何学
作者
Eric Jonas,Stefan Kühn,Nils E. Schlörer
摘要
Calculation of solution-state NMR parameters, including chemical shift values and scalar coupling constants, is often a crucial step for unambiguous structure assignment. Data-driven (sometimes called empirical) methods leverage databases of known parameter values to estimate parameters for unknown or novel molecules. This is in contrast to popular ab initio techniques that use detailed quantum computational chemistry calculations to arrive at parameter estimates. Data-driven methods have the potential to be considerably faster than ab inito techniques and have been the subject of renewed interest over the past decade with the rise of high-quality databases of NMR parameters and novel machine learning methods. Here, we review these methods, their strengths and pitfalls, and the databases they are built on.
科研通智能强力驱动
Strongly Powered by AbleSci AI